16 research outputs found
Modern Genomic Tools for Pigeonpea Improvement: Status and Prospects
Pigeonpea owing to its ability to sustain harsh environment and limited input/water requirement remains an excellent remunerative crop in the face of increasing climatic adversities. With nearly 70% share in global pigeonpea production, India is the leading pigeonpea producing country. Since the mid-1900s, constant research efforts directed to improve yield and resistance levels of pigeonpea have resulted in the development and deployment of several commercially accepted cultivars in India, accommodating into diverse agro-climatic zones. However, the crop productivity needs incremental improvements in order to meet the growing nutritional demands, especially in developing countries like India where pigeonpea forms a dominant part of vegetarian diet. Empowering crop improvement strategies with genomic tool kit is imperative to attain the project gains in crop yield. In the context, adoption of next-generation sequencing (NGS) technology has helped establish a wide range of genomic resources to support pigeonpea breeding, and the existing molecular tool kit includes genome-wide genetic markers, transcriptome/genome assemblies, and candidate genes/QTLs for target traits. Similarly, availability of whole mitochondrial genome sequence and derived DNA markers is immensely relevant in order to furthering the understanding of cytoplasmic male sterility (CMS) system and hybrid breeding. This chapter covers the progress of developing modern genomic resources in pigeonpea and highlights their vital role in designing future crop breeding schemes
Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellationâacross existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in humanâenvironmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the communityâs use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
Recommended from our members
From DNA sequences to microbial ecology: Wrangling NEON soil microbe data with the neonMicrobe R package
Soil microbial communities play critical roles in various ecosystem processes, but studies at a large spatial and temporal scale have been challenging due to the difficulty in finding the relevant samples in available data sets as well as the lack of standardization in sample collection and processing. The National Ecological Observatory Network (NEON) has been collecting soil microbial community data multiple times per year for 47 terrestrial sites in 20 eco-climatic domains, producing one of the most extensive standardized sampling efforts for soil microbial biodiversity to date. Here, we introduce the neonMicrobe R packageâa suite of downloading, preprocessing, data set assembly, and sensitivity analysis tools for NEONâs newly published 16S and ITS amplicon sequencing data products which characterize soil bacterial and fungal communities, respectively. neonMicrobe is designed to make these data more accessible to ecologists without assuming prior experience with bioinformatic pipelines. We describe quality control steps used to remove quality-flagged samples, report on sensitivity analyses used to determine appropriate quality filtering parameters for the DADA2 workflow, and demonstrate the immediate usability of the output data by conducting standard analyses of soil microbial diversity. The sequence abundance tables produced by neonMicrobe can be linked to NEONâs other data products (e.g., soil physical and chemical properties, plant community composition) and soil subsamples archived in the NEON Biorepository. We provide recommendations for incorporating neonMicrobe into reproducible scientific workflows, discuss technical considerations for large-scale amplicon sequence analysis, and outline future directions for NEON-enabled microbial ecology. In particular, we believe that NEON marker gene sequence data will allow researchers to answer outstanding questions about the spatial and temporal dynamics of soil microbial communities while explicitly accounting for scale dependence. We expect that the data produced by NEON and the neonMicrobe R package will act as a valuable ecological baseline to inform and contextualize future experimental and modeling endeavors. © 2021 The Authors. Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.)
Background:
Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown.
Results:
In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stagesâbefore, at the onset, and at late ripeningâindicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched drought-responsive elements in the promoter regions of those genes as part of the grapes response to drought.
Conclusion:
Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.Other UBCNon UBCReviewedFacult