2,395 research outputs found
Sneutrino-induced like sign dilepton signal with conserved R-parity
Lepton number violation could be manifest in the sneutrino sector of
supersymmetric extensions of the standard model with conserved R-parity. Then
sneutrinos decay partly into the ``wrong sign charged lepton'' final state, if
kinematically accessible. In sneutrino pair production or associated single
sneutrino production, the signal then is a like sign dilepton final state.
Under favourable circumstances, such a signal could be visible at the LHC or a
next generation linear collider for a relative sneutrino mass-splitting of
order and sneutrino width of order (1 GeV). On the
other hand, the like sign dilepton event rate at the TEVATRON is probably too
small to be observable.Comment: 19 pages, 14 Figures. Section about LSD at LHC and TEVATRON added.
Previous Title "Single sneutrino production and the wrong charged lepton
signal
A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus
OBJECTIVES: Seabirds have suffered dramatic population declines in recent decades with one such species being the sooty tern Onychoprion fuscatus. An urgent call to re-assess their conservation status has been made given that some populations, such as the one on Ascension Island, South Atlantic, have declined by over 80% in three generations. Little is known about their population genetics, which would aid conservation management through understanding ecological processes and vulnerability to environmental change. We developed a multiplex microsatellite marker set for sooty terns including sex-typing markers to assist population genetics studies. RESULTS: Fifty microsatellite loci were isolated and tested in 23 individuals from Ascension Island. Thirty-one were polymorphic and displayed between 4 and 20 alleles. Three loci were Z-linked and two autosomal loci deviated from Hardy-Weinberg equilibrium. The remaining 26 autosomal loci together with three sex-typing makers were optimised in seven polymerase chain reaction plexes. These 26 highly polymorphic markers will be useful for understanding genetic structure of the Ascension Island population and the species as a whole. Combining these with recently developed microsatellite markers isolated from Indian Ocean birds will allow for assessment of global population structure and genetic diversity
Characterization of 18 polymorphic microsatellite loci for the western rock lobster Panulirus cygnus
Morphological brain differences between adult stutterers and non-stutterers
BACKGROUND: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. METHODS: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. RESULTS: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. CONCLUSIONS: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question
Self-recognition in corals facilitates deep-sea habitat engineering
The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide
Selection for Heterozygosity Gives Hope to a Wild Population of Inbred Wolves
Recent analyses have questioned the usefulness of heterozygosity estimates as measures of the inbreeding coefficient (f), a finding that may have dramatic consequences for the management of endangered populations. We confirm that f and heterozygosity is poorly correlated in a wild and highly inbred wolf population. Yet, our data show that for each level of f, it was the most heterozygous wolves that established themselves as breeders, a selection process that seems to have decelerated the loss of heterozygosity in the population despite a steady increase of f. The markers contributing to the positive relationship between heterozygosity and breeding success were found to be located on different chromosomes, but there was a substantial amount of linkage disequilibrium in the population, indicating that the markers are reflecting heterozygosity over relatively wide genomic regions. Following our results we recommend that management programs of endangered populations include estimates of both f and heterozygosity, as they may contribute with complementary information about population viability
- …