46 research outputs found

    Water and ion pairing in polyelectrolyte multilayers

    No full text
    The water content in multilayers made from poly(styrenesulfonate) and poly(diallyldimethylammonium chloride) was determined using infrared spectroscopy and thermal gravimetric analysis. Under ambient conditions the polyelectrolyte multilayer contains 10-20 wt % water, which is removed by heating under dry conditions to 100 °C. FTIR comparison of multilayers with solution-precipitated polyelectrolyte complexes of the same polymers revealed that both the composition and sulfonate group environment were identical

    Humic Substances-Assisted Synthesis of Nanoparticles in the Nature and in the Lab

    No full text

    A New Humic Acid Preparation with Addition of Silver Nanoparticles

    No full text

    Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Get PDF
    <p>Abstract</p> <p>ZnO nanoparticle&#8211;based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against <it>Staphylococcus aureus</it> bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.</p
    corecore