9,161 research outputs found

    Demonstration of Frequency Stability limited by Thermal Fluctuation Noise in Silicon Nitride Nanomechanical Resonators

    Full text link
    The frequency stability of nanomechanical resonators (NMR) dictates the fundamental performance limit of sensors that relate physical perturbations to a resonance frequency shift. While the contribution of thermomechanical noise to frequency stability was understood recently, thermal fluctuation noise has attracted less attention despite being the ultimate performance limit of temperature sensing. We provide a model for the frequency stability of NMR considering both additive phase noise (i.e., thermomechanical and detection noises) and thermal fluctuation noise. We then experimentally demonstrate optimized NMR achieving frequency stability limited by thermal fluctuation noise. Our work shows that current models for NMR frequency stability can be incomplete. It also paves a way for NMR radiation detectors to reach the unattained fundamental detectivity limit of thermal-based radiation sensing

    Solvent resistant copolyimide

    Get PDF
    A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at 350.degree. , 371.degree. and 400.degree. C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at 23.degree., 150.degree., 177.degree. and 204.degree. C

    Copolyimides prepared from ODPA, BTDA and 3,4'-ODA

    Get PDF
    A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA

    Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers

    Get PDF
    We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive gas. Due to photoionization, previously unknown types of asymmetric self-phase modulation and `universal' modulational instabilities existing in both normal and anomalous dispersion regions appear. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.Comment: 5 pages, 4 figure

    Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7

    Get PDF
    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2−xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice

    Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber

    No full text
    We numerically investigate self-frequency blueshifting of a fundamental soliton in a gas-filled hollow-core photonic crystal fiber. Because of the changing underlying soliton parameters, the blueshift gives rise to adiabatic soliton compression. Based on these features, we propose a device that enables frequency shifting over an octave and pulse compression from 30 fs down to 2.3 fs.W. Chang is supported by the Australian Research Council (DE130101432)
    • …
    corecore