6 research outputs found

    Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    Get PDF
    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires

    Silicon coupled with plasmon nanocavities generates bright visible hot luminescence

    No full text
    Due to limitations in device speed and performance of silicon-based electronics, silicon optoelectronics has been extensively studied to achieve ultrafast optical-data processing(1–3). However, the biggest challenge has been to develop an efficient silicon-based light source since indirect band-gap of silicon gives rise to extremely low emission efficiency. Although light emission in quantum-confined silicon at sub-10 nm lengthscales has been demonstrated(4–7), there are difficulties in integrating quantum structures with conventional electronics(8,9). It is desirable to develop new concepts to obtain emission from silicon at lengthscales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in “bulk-sized” silicon coupled with plasmon nanocavities from non-thermalized carrier recombination. Highly enhanced emission quantum efficiency (>1%) in plasmonic silicon, along with its size compatibility with present silicon electronics, provides new avenues for developing monolithically integrated light-sources on conventional microchips

    Silicon nanostructures for photonics and photovoltaics

    No full text
    Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material

    Silicon nanostructures for photonics and photovoltaics

    No full text
    corecore