2,007 research outputs found
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Three-dimensional meso-scale finite element modeling of bonded joints between a near-surface mounted FRP strip and concrete
Author name used in this publication: J. G. Teng2012-2013 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
An integrated organisation-wide data quality management and information governance framework: theoretical underpinnings
Introduction Increasing investment in eHealth aims to improve cost effectiveness and safety of care. Data extraction and aggregation can create new data products to improve professional practice and provide feedback to improve the quality of source data. A previous systematic review concluded that locally relevant clinical indicators and use of clinical record systems could support clinical governance. We aimed to extend and update the review with a theoretical framework.Methods We searched PubMed, Medline, Web of Science, ABI Inform (Proquest) and Business Source Premier (EBSCO) using the terms curation, information ecosystem, data quality management (DQM), data governance, information governance (IG) and data stewardship. We focused on and analysed the scope of DQM and IG processes, theoretical frameworks, and determinants of the processing, quality assurance, presentation and sharing of data across the enterprise.Findings There are good theoretical reasons for integrated governance, but there is variable alignment of DQM, IG and health system objectives across the health enterprise. Ethical constraints exist that require health information ecosystems to process data in ways that are aligned with improving health and system efficiency and ensuring patient safety. Despite an increasingly ‘big-data’ environment, DQM and IG in health services are still fragmented across the data production cycle. We extend current work on DQM and IG with a theoretical framework for integrated IG across the data cycle.Conclusions The dimensions of this theory-based framework would require testing with qualitative and quantitative studies to examine the applicability and utility, along with an evaluation of its impact on data quality across the health enterprise
Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery
A carbon nanotube [CNT]/Co3O4 composite is introduced as a catalyst for the air electrode of lithium-air [Li/air] batteries. Co3O4 nanoparticles are successfully attached to the sidewall of the CNT by a hydrothermal method. A high discharge capacity and a low overvoltage indicate that the CNT/Co3O4 composite is a very promising catalyst for the air electrode of Li/air batteries
Algorithm for identifying and separating beats from arterial pulse records
BACKGROUND: This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. METHODS: The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative criteria. Synchronization ability was measured through the coefficient of variation and the median value of correlation for each patient. These parameters were assessed by means of Friedman's ANOVA and Kendall Concordance test. RESULTS: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero for both of them. The synchronism variability analysis was significant (p < 0.01) for the two statistics, showing that the algorithm produced the best result. CONCLUSION: The proposed algorithm showed good performance as expressed by its high sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the algorithm performed the best detection. Patients with marked arrhythmic processes are not good candidates for this kind of analysis. At most, they would be singled out by the algorithm and, thereafter, to be checked by an operator
Respiratory Syncytial Virus NS1 Protein Colocalizes with Mitochondrial Antiviral Signaling Protein MAVS following Infection
Respiratory syncytial virus (RSV) nonstructural protein 1(NS1) attenuates type-I interferon (IFN) production during RSV infection; however the precise role of RSV NS1 protein in orchestrating the early host-virus interaction during infection is poorly understood. Since NS1 constitutes the first RSV gene transcribed and the production of IFN depends upon RLR (RIG-I-like receptor) signaling, we reasoned that NS1 may interfere with this signaling. Herein, we report that NS1 is localized to mitochondria and binds to mitochondrial antiviral signaling protein (MAVS). Live-cell imaging of rgRSV-infected A549 human epithelial cells showed that RSV replication and transcription occurs in proximity to mitochondria. NS1 localization to mitochondria was directly visualized by confocal microscopy using a cell-permeable chemical probe for His6-NS1. Further, NS1 colocalization with MAVS in A549 cells infected with RSV was shown by confocal laser microscopy and immuno-electron microscopy. NS1 protein is present in the mitochondrial fraction and co-immunoprecipitates with MAVS in total cell lysatesof A549 cells transfected with the plasmid pNS1-Flag. By immunoprecipitation with anti-RIG-I antibody, RSV NS1 was shown to associate with MAVS at an early stage of RSV infection, and to disrupt MAVS interaction with RIG-I (retinoic acid inducible gene) and the downstream IFN antiviral and inflammatory response. Together, these results demonstrate that NS1 binds to MAVS and that this binding inhibits the MAVS-RIG-I interaction required for IFN production
Effect of ZnCdTe-Alloyed Nanocrystals on Polymer–Fullerene Bulk Heterojunction Solar Cells
The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene) (MEH-PPV), fullerene (C60), and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with different ZnCdTe:[MEH-PPV + C60] weight ratios of 10 wt% (D1–1), 20 wt% (D1–2), 40 wt% (D1–3), and 70 wt% (D1–4), it was found that the device D1–3exhibits the best performance. The power conversion efficiency (η) is improved doubly compared with that of the MEH-PPV:C60device
Application of functionalized nanofluid in thermosyphon
A water-based functionalized nanofluid was made by surface functionalizing the ordinary silica nanoparticles. The functionalized nanofluid can keep long-term stability. and no sedimentation was observed. The functionalized nanofluid as the working fluid is applied in a thermosyphon to understand the effect of this special nanofluid on the thermal performance of the thermosyphon. The experiment was carried out under steady operating pressures. The same work was also explored for traditional nanofluid (consisting of water and the same silica nanoparticles without functionalization) for comparison. Results indicate that a porous deposition layer exists on the heated surface of the evaporator during the operating process using traditional nanofluid; however, no coating layer exists for functionalized nanofluid. Functionalized nanofluid can enhance the evaporating heat transfer coefficient, while it has generally no effect on the maximum heat flux. Traditional nanofluid deteriorates the evaporating heat transfer coefficient but enhances the maximum heat flux. The existence of the deposition layer affects mainly the thermal performance, and no meaningful nanofluid effect is found in the present study
25-Hydroxyvitamin D and pre-clinical alterations in inflammatory and hemostatic markers: a cross sectional analysis in the 1958 British Birth Cohort
BACKGROUND: Vitamin D deficiency has been suggested as a cardiovascular risk factor, but little is known about underlying mechanisms or associations with inflammatory or hemostatic markers. Our aim was to investigate the association between 25-hydroxyvitamin D [25(OH)D, a measure for vitamin D status] concentrations with pre-clinical variations in markers of inflammation and hemostasis. METHODOLOGY/PRINCIPAL FINDINGS: Serum concentrations of 25(OH)D, C-reactive protein (CRP), fibrinogen, D-dimer, tissue plasminogen activator (tPA) antigen, and von Willebrand factor (vWF) were measured in a large population based study of British whites (aged 45 y). Participants for the current investigation were restricted to individuals free of drug treated cardiovascular disease (n = 6538). Adjusted for sex and month, 25(OH)D was inversely associated with all outcomes (p or =75 nmol/l compared to < 25 nmol/l. D-dimer concentrations were lower for participants with 25(OH)D 50-90 nmol/l compared to others (quadratic term p = 0.01). We also examined seasonal variation in hemostatic and inflammatory markers, and evaluated 25(OH)D contribution to the observed patterns using mediation models. TPA concentrations varied by season (p = 0.02), and much of this pattern was related to fluctuations in 25(OH)D concentrations (p < or =0.001). Some evidence of a seasonal variation was observed also for fibrinogen, D-dimer and vWF (p < 0.05 for all), with 25(OH)D mediating some of the pattern for fibrinogen and D-dimer, but not vWF. CONCLUSIONS: Current vitamin D status was associated with tPA concentrations, and to a lesser degree with fibrinogen and D-dimer, suggesting that vitamin D status/intake may be important for maintaining antithrombotic homeostasi
- …