5 research outputs found

    Coastal Urban Flood Simulation Using FEM, GIS and Remote Sensing

    No full text
    In this paper, a rainfall runoff model for coastal urban watershed considering the effects of tidal variations using Finite Element Method (FEM) is presented. Overland flow is modeled using the mass balance equation considering the impervious character of the urban watershed. Storm water flow through the channel is modeled using the diffusion wave form of the Saint Venant's equations and considering the tidal variations. Galerkin's FEM is used in the approximation of the governing equations. One dimensional linear line elements are used in the channel discretization. Further the mass balance based overland flow model and diffusion wave based channel flow model have been integrated for prediction of flood. Slope values for the overland flow are determined using the Geographical Information System (GIS) from the Digital Elevation Model (DEM) of the area. The landuse is determined using the remote sensing data. Remote sensing data is analyzed using the ERDAS Imagine and ArcGIS and the Manning's roughness is calculated for each subdivision of subcatchment. The developed models have been verified with the models available in literature and are found to be satisfactory. Further, the integrated model has been applied to the runoff simulation of a coastal urban watershed in Navi Mumbai, in Maharashtra state of India to analyze the flooding in monsoon season along with the tidal influences. The model could satisfactorily predict the runoff due to monsoon rains coupled with the tidal variations. The developed model will be useful in the urban coastal flood analysis due to heavy rainfall and tidal effects

    Comparison between two hydrodynamic models for flooding simulations at river Lima basin

    No full text
    According to EU flood risks directive, flood hazard maps should include information on hydraulic characteristics of vulnerable locations, i.e. the inundated areas, water depths and velocities. These features can be assessed by the use of advanced hydraulic modelling tools which are presented in this paper based on a case study in the river Lima basin, Portugal. This river includes several flood-prone areas. Ponte Lima town is one of the places of higher flood risk. The upstream dams can lower the flood risks if part of its storage capacity is allocated for mitigating flood events. However, proper management of dam releases and the evaluation of downstream river flows should be considered for preventing flood damages. A hydrological and a one-dimensional hydrodynamic model were implemented, and at a particular flood-prone town, inundation was assessed using a two-dimensional model. The hydrological model is based on the well known Sacramento model. For this purpose, two different modelling implementations were analysed: a model based on a finite element mesh and a model based on rectangular grids. The computational performance of the two modelling implementations is evaluated. Historical flood events were used for model calibration serving as a basis for the establishment of different potential flood scenarios. Intense precipitation events in the river’s basin and operational dam releases are determinant for the occurrence of floods at vulnerable downstream locations. The inundation model based on the unstructured mesh reveals to be more computationally efficient if high spatial resolution is required. A new combination of software tools for floods simulation is presented including an efficient alternative for simulation of 2-D inundation using a finite element mesh instead of a grid
    corecore