51 research outputs found

    Health Policy and Systems Research in Twelve Eastern Mediterranean Countries: a stocktaking of production and gaps (2000-2008)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this study are to: (1) profile the production of Health Policy and Systems Research (HPSR) published between 2000 and 2008 in 12 countries in the Eastern Mediterranean Region (EMR): Bahrain, Egypt, Jordan, Lebanon, Libya, Morocco, Oman, Palestine, Sudan, Syria, Tunisia, and Yemen; (2) identify gaps; and (3) assess the extent to which existing HPSR produced in the region addresses regional priorities pertaining to Health Financing, Human Resources for Health and the Role of the Non-State Sector. This is the first stocktaking paper of HPSR production and gaps in the EMR.</p> <p>Methods</p> <p>Articles indexed on Medline between years 2000 and 2008 for the 12 study countries were selected. A MeSH term based search was conducted using country names. Articles were assessed using a coding sheet adapted for the region which included themes on: Governance Arrangements, Financial Arrangements, Delivery Arrangements, and Implementation Strategies. Identified articles were matched against regional research priorities to assess the extent to which research production aligns with priorities.</p> <p>Results</p> <p>A total of 1,487 articles (11.94%) fit the criteria in the coding sheet. Results showed an increase in HPSR production which peaked after 2005. Most identified articles focused on Delivery Arrangements (68.1%), and Implementation Strategies (24.4%). Most HPSR addressed priorities in Human Resources for Health (39%<b>)</b>, and some articles focused on Health Financing (12%) and Role of the Non-State Sector (6.1%).</p> <p>Conclusions</p> <p>Despite global calls for producing and translating HPSR into policy, there are still significant gaps in the EMR. More efforts are needed to produce HPSR and align production and translation with the demand for evidence by policymakers. Findings can help inform and direct future plans and activities for the Evidence Informed Policy Network- EMR, World Health Organization- EMR, and the Middle East and North Africa Health Policy Forum, in addition to being useful for countries that host or are planning to host KT platforms in the region.</p

    Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.

    Get PDF
    BACKGROUND The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making

    An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis

    Full text link
    © 2018 Elsevier Inc. The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed “mouse kidney parvovirus” (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans. A kidney parvovirus found in multiple laboratory mouse colonies causes spontaneous nephropathy and represents a new tool for studying chronic kidney disease
    corecore