10 research outputs found

    Size-Tailored Physicochemical Properties of Monodisperse Polystyrene Nanoparticles and the Nanocomposites Made Thereof

    Get PDF
    The latex monodisperse polystyrene (PS) colloids are important for different advanced applications (e.g. in coating, biotechnology etc.). However, the size dependency of their structural properties that impacts the characteristics of the nanocomposites composed thereof is largely unknown. Here, monodisperse PS nanoparticles (MPNPs) are synthesized via emulsion polymerization in five sizes (50, 150, 300, 350, and 450 nm). The size of the PS MPNPs is tailored by controlling the reaction time, temperature, and amount of surfactant and initiator. The correlation between the particle size and structural properties of the PS MPNPs is established by different thermomechanical and optical characterizations. The smaller particles (50 and 150 nm) show a lower glass transition (Tg) and thermal decomposition temperature and a lower Raman peak intensity. Yet, they trigger a higher IR absorption, thanks to a larger surface area. When incorporated in a polyvinyl alcohol (PVA) matrix, the smaller particles impart the resulting nanocomposite a higher tensile strength, and elastic and storage moduli. Whereas, they decline the elongation and loss factor. The very few examples of the MPNPs incorporated polymeric nanocomposites have been unstudied from this perspective. Thus, these tangible knowledge can profit scalable production of this kind of nanocomposite materials for different applications in a cost/energy efficient manner.Peer reviewe

    A shape tailored gold-conductive polymer nanocomposite as a transparent electrode with extraordinary insensitivity to volatile organic compounds (VOCs)

    Get PDF
    In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field.Peer reviewe

    Biomimetic transferable surface for a real time control over wettability and photoerasable writing with water drop lens

    Get PDF
    We demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface. When it is decorated with PVDF nanofibers yarns, the random mesh transform from rose petal sticky state into grass leaf slippy state. When it is placed on sticky, hydrophilic metal coin, it converts the surface of the coin to super hydrophobic. Adjustments in the yarn system, like interyarn spacing, can be done in real time to influence its wettability, which is a unique feature. Next, we load the polymer with a photochromic compound for chemical restructuring. It affects the sliding angle of water drop and makes the fibers optically active. We also demonstrate a “water droplets lens” concept that enables erasable writing on photochromic rose petal sticky fibrous surface. The droplet on a highly hydrophobic surface acts as a ball lens to concentrate light onto a hot spot; thereby we demonstrate UV light writing with water lenses and visible light erasing

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation

    No full text
    corecore