102 research outputs found

    ZnO@ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity

    Get PDF
    A ‘lawn-like’ distribution of interconnected zinc oxide nanorods, coated with a metal-organic compound based on zeolitic imidazolate frameworks – ZIF-8 was prepared on microstructured thin-film interdigitated Pt-electrodes forming ZnO@ZIF-8 core-shell heterostructures and investigated as gas sensor material in relation to the identical, but uncovered pure ZnO-layer. This composite combines the gas sensing properties of the metal oxide ZnO with the specific properties of the metal-organic framework material which result in a distinct change of the conditions of gas sensing at the ZnO/ZIF-8-interface. Herein, for the first time it is reported that as prepared ZnO@ZIF-8 composite material is an attractive choice to reduce the cross-sensitivity to water vapour (humidity) in the gas sensing response towards propene and ethene. The observed change of sensitivity in relation to uncovered ZnO is discussed to be due to (i) the specific interaction of the ZIF-8 at the interface with the ZnO taking influence on the gas reaction processes, (ii) the diffusivity of ZIF-8 for the different gas components, and (iii) the sorption behaviour of the used gases at the ZnO interface and inside the ZIF-8 material

    MicroRNA-277 Modulates the Neurodegeneration Caused by Fragile X Premutation rCGG Repeats

    Get PDF
    Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder, has been recognized in older male fragile X premutation carriers and is uncoupled from fragile X syndrome. Using a Drosophila model of FXTAS, we previously showed that transcribed premutation repeats alone are sufficient to cause neurodegeneration. MiRNAs are sequence-specific regulators of post-transcriptional gene expression. To determine the role of miRNAs in rCGG repeat-mediated neurodegeneration, we profiled miRNA expression and identified selective miRNAs, including miR-277, that are altered specifically in Drosophila brains expressing rCGG repeats. We tested their genetic interactions with rCGG repeats and found that miR-277 can modulate rCGG repeat-mediated neurodegeneration. Furthermore, we identified Drep-2 and Vimar as functional targets of miR-277 that could modulate rCGG repeat-mediated neurodegeneration. Finally, we found that hnRNP A2/B1, an rCGG repeat-binding protein, can directly regulate the expression of miR-277. These results suggest that sequestration of specific rCGG repeat-binding proteins could lead to aberrant expression of selective miRNAs, which may modulate the pathogenesis of FXTAS by post-transcriptionally regulating the expression of specific mRNAs involved in FXTAS

    E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    Get PDF
    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosom

    Histone deacetylases suppress cgg repeat-induced neurodegeneration via transcriptional silencing in models of Fragile X Tremor Ataxia Syndrome

    Get PDF
    Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 59UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.open293

    A preliminary screening and characterization of suitable acids for sandstone matrix acidizing technique: a comprehensive review

    Get PDF
    Matrix acidizing is a broadly developed technique in sandstone stimulation to improve the permeability and porosity of a bottom-hole well. The most popular acid used is mud acid (HF–HCl). It is a mixture of hydrofluoric acid and hydrochloric acid. However, one of the conventional problems in sandstone acidizing is that mud acid faces significant issues at high temperature such as rapid rate of reaction, resulting in early acid consumption. This downside has given a negative impact to sandstone acidizing as it will result in not only permeability reduction, but can even extend to acid treatment failure. So, the aim of this study is to provide a preliminary screening and comparison of different acids based on the literature to optimize the acid selection, and targeting various temperatures of sandstone environment. This paper has comprehensively reviewed the experimental works using different acids to understand the chemical reactions and transport properties of acid in sandstone environment. The results obtained indicated that fluoroboric acid (HBF4) could be useful in enhancing the sandstone acidizing process, although more studies are still required to consolidate this conclusion. HBF4 is well known as a low damaging acid for sandstone acidizing due to its slow hydrolytic reaction to produce HF. This would allow deeper penetration of the acid into the sandstone formation at a slower rate, resulting in higher porosity and permeability enhancement. Nevertheless, little is known about the effective temperature working range for a successful treatment. Considering the pros and cons of different acids, particularly those which are associated with HF and HBF4, it is recommended to perform a comprehensive analysis to determine the optimum temperature range and effective working window for sandstone acidizing before treatment operation. Prior to sandstone acid stimulation, it is essential to predict the feasibility of acid selected by integrating the effects of temperature, acid concentration and injection rate. Therefore, this manuscript has thrown light into the research significance of further studies
    corecore