10 research outputs found

    Non-linear analysis of out-of-phase instabilities in advanced heavy water reactor

    No full text
    In this paper we study thermally induced instabilities in Indian Advanced Heavy Water Reactor (AHWR). One dimensional homogeneous equilibrium model has been used to simulate the two-phase flow. The nonlinear mass, momentum and energy conservation equations are solved along the characteristic directions by using implicit finite difference scheme. The virtue of this scheme is that it handles the boundary conditions naturally. This scheme is fast because the time steps can be greater than that given by Courant-Friedrichs-Levvy condition. The numerical scheme is sufficiently general and can handle axially varying heat flux and different combinations of inlet and exit boundary conditions of enthalpy, mass flux and pressure and multiple channels. No assumptions regarding constant properties and incompressibility have been taken. The one dimensional fuel heat transfer model was then coupled to the thermal-hydraulics model to analyze out-of-phase instabilities in AHWR. Out-of-phase oscillations are studied by considering two parallel boiling channels. Further effects of radial power distribution, inlet orificing and axial power distribution were considered

    Numerical modeling of buoyancy induced convection in finned heat sinks in presence of unheated and heated shrouds

    No full text
    This paper investigates the effects of the presence of unheated and heated shrouds on the thermal performance of longitudinal finned heat sinks. A comprehensive numerical study was conducted to determine the impact of the shroud clearance from the tip of the fins and shroud heating. The first part of the study deals with the effects of an unheated shroud on finned heat sinks of different fin height, fin pitch and length in an attempt to cover a wide range of geometry. The numerical results reveal an optimum clearance for maximum heat transfer. For all heat sinks studied the unheated shroud improved the performance by as much as 15% until the shroud was very close when the performance decreased by as much as 10%. In the second part of the paper, the effects of heating of the shroud were considered. In these numerical runs, an isothermal boundary condition was imposed on the shroud. For the heating levels considered, it was found that heating of the shrouds can increase or lower the thermal performance of the heat sink depending on the heat sink geometry and shroud clearance. Finally, the numerical results also revealed a systematic dependence of the normalized Nusselt number on the Rayleigh number for a given heat sink geometry

    Advances in electrokinetics and their applications in micro/nano fluidics

    No full text
    Electrokinetic phenomena originally developed in colloid chemistry have drawn great attention in micro- and nano-fluidic lab-on-a-chip systems for manipulation of both liquids and particles. Here we present an overview of advances in electrokinetic phenomena during recent decades and their various applications in micro- and nano-fluidics. The advances in electrokinetics are generally classified into two categories, namely electrokinetics over insulating surfaces and electrokinetics over conducting surfaces. In each category, the phenomena are further grouped according to different physical mechanisms. For each category of electrokinetics, the review begins with basic theories, and followed by their applications in micro- and/or nano-fluidics with highlighted disadvantages and advantages. Finally, the review is ended with suggested directions for the future research

    Advances in electrokinetics and their applications in micro/nano fluidics

    No full text

    Electrohydrodynamic phenomena

    No full text
    This work is a review article focused on exploring the interactions between external and induced electric fields and fluid motion, in the presence of embedded charges. Such interactions are generally termed electrohydrodynamics (EHD), which encompasses a vast range of flows stemming from multiscale physical effects. In this review article we shall mainly emphasize on two mechanisms of particular interest to fluid dynamists and engineers, namely electrokinetic flows and the leaky dielectric model. We shed light on the underlying physics behind the above mentioned phenomena and subsequently demonstrate the presence of a common underpinning pattern which governs any general electrohydrodynamic motion. Hence we go on to show that the seemingly unrelated fields of electrokinetics and the leaky dielectric models are indeed closely related to each other through the much celebrated Maxwell stresses, which have long been known as stresses caused in fluids in presence of electric and magnetic fields. Interactions between Maxwell Stresses and charges (for instance, in the form of ions) present in the fluid generates a body force on the same and eventually leads to flow actuation. We show that the manifestation of the Maxwell stresses itself depends on the charge densities, which in turn is dictated by the underlying motion of the fluid. We demonstrate how such inter-related dynamics may give rise intricately coupled and non-linear system of equations governing the dynamical state of the system. This article is mainly divided into two parts. First, we explore the realms of electrokinetics, wherein the formation and the structure of the so-called electrical double layer (EDL) is delineated. Subsequently, we review EDL’s relevance to electroosmosis and streaming potential with the key being the presence and absence of an applied pressure gradient. We thereafter focus on the leaky dielectric model, wherein the fundamental governing equations and its main difference with electrokinetics are described. We limit our attentions to the leaky dielectric motion around droplets and flat surfaces and subsequent interface deformation. To this end, through a rigorous review of a number of previous articles, we establish that the interface shapes can be finely tailored to achieve the desired geometrical characteristics by tuning the fluid properties. We further discuss previous studies, which have shown migration of droplets in the presence of strong electric fields. Finally, we describe the effects of external agents such as surface impurities on leaky dielectric motion and attempt to establish a qualitative connection between the leaky dielectric model and EDLs. We finish off with some pointers for further research activities and open questions in this field.by Aditya Bandopadhyay and Uddipta Ghos
    corecore