28 research outputs found

    Performance Analysis of Effective Methods for Solving Band Matrix SLAEs after Parabolic Nonlinear PDEs

    Full text link
    This paper presents an experimental performance study of implementations of three different types of algorithms for solving band matrix systems of linear algebraic equations (SLAEs) after parabolic nonlinear partial differential equations -- direct, symbolic, and iterative, the former two of which were introduced in Veneva and Ayriyan (arXiv:1710.00428v2). An iterative algorithm is presented -- the strongly implicit procedure (SIP), also known as the Stone method. This method uses the incomplete LU (ILU(0)) decomposition. An application of the Hotelling-Bodewig iterative algorithm is suggested as a replacement of the standard forward-backward substitutions. The upsides and the downsides of the SIP method are discussed. The complexity of all the investigated methods is presented. Performance analysis of the implementations is done using the high-performance computing (HPC) clusters "HybriLIT" and "Avitohol". To that purpose, the experimental setup and the results from the conducted computations on the individual computer systems are presented and discussed.Comment: 10 pages, 2 figure

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe
    corecore