6 research outputs found

    Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories. Methods: We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category. Findings: In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000–277 000) and 2·51 million (2·11–2·99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87 400–145 000) and 1·28 million incident cases (0·947–1·71) in 2019. Age-standardised mortality rates decreased from 7·5 (6·6–8·4) per 100 000 population in 1990 to 3·3 (2·8–3·9) per 100 000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18·1% [17·1–19·2]), followed by N meningitidis (13·6% [12·7–14·4]) and K pneumoniae (12·2% [10·2–14·3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76·5% [69·5–81·8]), followed by N meningitidis (72·3% [64·4–78·5]) and viruses (58·2% [47·1–67·3]). Interpretation: Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatment. Funding: Bill & Melinda Gates Foundation

    Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019

    Get PDF
    Background The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. Methods We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. Findings In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. Interpretation The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. Funding The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)

    Translating Disease Networks to Executable Boolean Models

    No full text
    International audienc

    Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches

    No full text
    International audienceIntroduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies
    corecore