11 research outputs found

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    Vascular flora of the Upper Paran\ue1 River floodplain

    No full text

    Osteocytes: mechanosensors of bone and orchestrators of mechanical adaptation

    No full text
    Significant progress has been made in the field of mechanotransduction in bone cells. The knowledge about the role of osteocytes as the professional mechanosensor cells of bone as well as the lacuno-canalicular porosity as the structure that mediates mechanosensing is increasing. New insights might result in a paradigm for understanding the bone formation response to mechanical loading, and the bone resorption response to disuse. Under physiological loading conditions the strain-derived flow of interstitial fluid through the lacuno-canalicular porosity seems to mechanically activate the osteocytes, which subsequently alter the bone remodeling activity of osteoblasts and/or osteoclasts. Fatigue loading results in local microdamage, disruption of normal flow patterns, and osteocyte apoptosis. Apoptotic osteocytes likely attract osteoclasts to resorb the damaged bone. This concept allows explanation of local bone gain and loss, as well as remodeling in response to fatigue damage, as processes supervised by mechanosensitive osteocytes. Uncovering the cellular and mechanical basis of the osteocyte’s response to loading would greatly contribute to our understanding of the cellular basis for bone remodeling, and could contribute to the discovery of new treatment modalities for bone mass disorders, such as osteoporosis
    corecore