1,631 research outputs found
Epilepsy Is a Risk Factor for Sudden Cardiac Arrest in the General Population
Background
People with epilepsy are at increased risk for sudden death. The most prevalent cause of sudden death in the general population is sudden cardiac arrest (SCA) due to ventricular fibrillation (VF). SCA may contribute to the increased incidence of sudden death in people with epilepsy. We assessed whether the risk for SCA is increased in epilepsy by determining the risk for SCA among people with active epilepsy in a community-based study.
Methods and Results
This investigation was part of the Amsterdam Resuscitation Studies (ARREST) in the Netherlands. It was designed to assess SCA risk in the general population. All SCA cases in the study area were identified and matched to controls (by age, sex, and SCA date). A diagnosis of active epilepsy was ascertained in all cases and controls. Relative risk for SCA was estimated by calculating the adjusted odds ratios using conditional logistic regression (adjustment was made for known risk factors for SCA). We identified 1019 cases of SCA with ECG-documented VF, and matched them to 2834 controls. There were 12 people with active epilepsy among cases and 12 among controls. Epilepsy was associated with a three-fold increased risk for SCA (adjusted OR 2.9 [95%CI 1.1â8.0.], p = 0.034). The risk for SCA in epilepsy was particularly increased in young and females.
Conclusion
Epilepsy in the general population seems to be associated with an increased risk for SCA
Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle
Summary
The International Osteoporosis Foundation (IOF) Capture the Fracture Campaign aims to support implementation of Fracture Liaison Services (FLS) throughout the world.
Introduction
FLS have been shown to close the ubiquitous secondary fracture prevention care gap, ensuring that fragility fracture sufferers receive appropriate assessment and intervention to reduce future fracture risk.
Methods
Capture the Fracture has developed internationally endorsed standards for best practice, will facilitate change at the national level to drive adoption of FLS and increase awareness of the challenges and opportunities presented by secondary fracture prevention to key stakeholders. The Best Practice Framework (BPF) sets an international benchmark for FLS, which defines essential and aspirational elements of service delivery.
Results
The BPF has been reviewed by leading experts from many countries and subject to beta-testing to ensure that it is internationally relevant and fit-for-purpose. The BPF will also serve as a measurement tool for IOF to award âCapture the Fracture Best Practice Recognitionâ to celebrate successful FLS worldwide and drive service development in areas of unmet need. The Capture the Fracture website will provide a suite of resources related to FLS and secondary fracture prevention, which will be updated as new materials become available. A mentoring programme will enable those in the early stages of development of FLS to learn from colleagues elsewhere that have achieved Best Practice Recognition. A grant programme is in development to aid clinical systems which require financial assistance to establish FLS in their localities.
Conclusion
Nearly half a billion people will reach retirement age during the next 20Â years. IOF has developed Capture the Fracture because this is the single most important thing that can be done to directly improve patient care, of both women and men, and reduce the spiralling fracture-related care costs worldwide.</p
Prediction error and accuracy of intraocular lens power calculation in pediatric patient comparing SRK II and Pediatric IOL Calculator
<p>Abstract</p> <p>Background</p> <p>Despite growing number of intraocular lens power calculation formulas, there is no evidence that these formulas have good predictive accuracy in pediatric, whose eyes are still undergoing rapid growth and refractive changes. This study is intended to compare the prediction error and the accuracy of predictability of intraocular lens power calculation in pediatric patients at 3 month post cataract surgery with primary implantation of an intraocular lens using SRK II versus Pediatric IOL Calculator for pediatric intraocular lens calculation. Pediatric IOL Calculator is a modification of SRK II using Holladay algorithm. This program attempts to predict the refraction of a pseudophakic child as he grows, using a Holladay algorithm model. This model is based on refraction measurements of pediatric aphakic eyes. Pediatric IOL Calculator uses computer software for intraocular lens calculation.</p> <p>Methods</p> <p>This comparative study consists of 31 eyes (24 patients) that successfully underwent cataract surgery and intraocular lens implantations. All patients were 12 years old and below (range: 4 months to 12 years old). Patients were randomized into 2 groups; SRK II group and Pediatric IOL Calculator group using envelope technique sampling procedure. Intraocular lens power calculations were made using either SRK II or Pediatric IOL Calculator for pediatric intraocular lens calculation based on the printed technique selected for every patient. Thirteen patients were assigned for SRK II group and another 11 patients for Pediatric IOL Calculator group. For SRK II group, the predicted postoperative refraction is based on the patient's axial length and is aimed for emmetropic at the time of surgery. However for Pediatric IOL Calculator group, the predicted postoperative refraction is aimed for emmetropic spherical equivalent at age 2 years old. The postoperative refractive outcome was taken as the spherical equivalent of the refraction at 3 month postoperative follow-up. The data were analysed to compare the mean prediction error and the accuracy of predictability of intraocular lens power calculation between SRK II and Pediatric IOL Calculator.</p> <p>Results</p> <p>There were 16 eyes in SRK II group and 15 eyes in Pediatric IOL Calculator group. The mean prediction error in the SRK II group was 1.03 D (SD, 0.69 D) while in Pediatric IOL Calculator group was 1.14 D (SD, 1.19 D). The SRK II group showed lower prediction error of 0.11 D compared to Pediatric IOL Calculator group, but this was not statistically significant (p = 0.74). There were 3 eyes (18.75%) in SRK II group achieved acccurate predictability where the refraction postoperatively was within Âą 0.5 D from predicted refraction compared to 7 eyes (46.67%) in the Pediatric IOL Calculator group. However the difference of the accuracy of predictability of postoperative refraction between the two formulas was also not statistically significant (p = 0.097).</p> <p>Conclusions</p> <p>The prediction error and the accuracy of predictability of postoperative refraction in pediatric cataract surgery are comparable between SRK II and Pediatric IOL Calculator. The existence of the Pediatric IOL Calculator provides an alternative to the ophthalmologist for intraocular lens calculation in pediatric patients. Relatively small sample size and unequal distribution of patients especially the younger children (less than 3 years) with a short time follow-up (3 months), considering spherical equivalent only.</p
Incorporating background frequency improves entropy-based residue conservation measures
BACKGROUND: Several entropy-based methods have been developed for scoring sequence conservation in protein multiple sequence alignments. High scoring amino acid positions may correlate with structurally or functionally important residues. However, amino acid background frequencies are usually not taken into account in these entropy-based scoring schemes. RESULTS: We demonstrate that using a relative entropy measure that incorporates amino acid background frequency results in improved performance in identifying functional sites from protein multiple sequence alignments. CONCLUSION: Our results suggest that the application of appropriate background frequency information may lead to more biologically relevant results in many areas of bioinformatics
Upper extremity impairments in women with or without lymphedema following breast cancer treatment
Breast-cancer-related lymphedema affects âź25% of breast cancer (BC) survivors and may impact use of the upper limb during activity. The purpose of this study is to compare upper extremity (UE) impairment and activity between women with and without lymphedema after BC treatment.
144 women post BC treatment completed demographic, symptom, and Disability of Arm-Shoulder-Hand (DASH) questionnaires. Objective measures included Purdue pegboard, finger-tapper, Semmes-Weinstein monofilaments, vibration perception threshold, strength, range of motion (ROM), and volume.
Women with lymphedema had more lymph nodes removed (pâ<â.001), more UE symptoms (pâ<â.001), higher BMI (pâ=â.041), and higher DASH scores (greater limitation) (pâ<â.001). For all participants there was less strength (elbow flexion, wrist flexion, grip), less shoulder ROM, and decreased sensation at the medial upper arm (pâ<â.05) in the affected UE. These differences were greater in women with lymphedema, particularly in shoulder abduction ROM (pâ<â.05). Women with lymphedema had bilaterally less elbow flexion strength and shoulder ROM (pâ<â.05). Past diagnosis of lymphedema, grip strength, shoulder abduction ROM, and number of comorbidities contributed to the variance in DASH scores (R
2 of 0.463, pâ<â.001).
UE impairments are found in women following treatment for BC. Women with lymphedema have greater UE impairment and limitation in activities than women without. Many of these impairments are amenable to prevention measures or treatment, so early detection by health care providers is essential
Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy
<p>Abstract</p> <p>Background</p> <p>Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that <it>ex-vivo </it>or even <it>in-vivo </it>abolition <it>or </it>disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger <it>arrays </it>and <it>nucleases </it>(ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype.</p> <p>Methods and Results</p> <p><it>First, </it>we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) <it>arrays </it>(ZFAs or Zif<sub>HIV-pol</sub>) and (b) two zinc-finger <it>nucleases </it>(ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (Zif<sub>HIV-pol</sub>F<sub>N</sub>). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (Zif<sub>HIV-1</sub>F<sub>N</sub>). <it>Second, </it>a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either Zif<sub>HIV-pol</sub>F<sub>N </sub>or Zif<sub>HIV-1</sub>F<sub>N </sub>chimeric genes (termed <b>LV- 2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N, </b></sub>respectively) is proposed. <it>Third, </it>two preclinical models for controlled testing of the safety and efficacy of either of these LVs are described using active HIV-infected TZM-bl reporter cells (HeLa-derived JC53-BL cells) and latent HIV-infected cell lines.</p> <p>Conclusion</p> <p><b>LV-2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N </b></sub>may offer the <it>ex-vivo </it>or even <it>in-vivo </it>experimental opportunity to halt HIV replication functionally by directly abrogating HIV-pol-gene-action <it>or </it>disrupting/excising over 80% of the proviral HIV DNA from latently infected cells.</p
The search for transient astrophysical neutrino emission with IceCube-DeepCore
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- âŚ