6 research outputs found

    Central metabolism of species of the genus Rhodococcus

    No full text
    Metabolism of Rhodococcus has evolved for adapting to a wide range of nutritional conditions. This adaptation often involves the flexibility of the central metabolism, which usually provides energy and precursors for biosynthesis processes, either during growth or during non-replicative metabolically active periods. The pathways of central metabolism are almost identical across widely divergent organisms, which share essentially the same metabolic network. However, this network possesses species-specific components, which depends on the biology of rhodococci. The central metabolism of members of Rhodococcus genus in the context of their physiology is the main topic of this chapter. An overview of main pathways of the central metabolism and their link with other metabolic processes is given. Glycolytic pathways, gluconeogenesis, phosphoenolpyruvate-pyruvate-oxalacetate node, tricarboxylic acid cycle (TCA), glyoxylate pathway and some litoautotrophic pathways are included.Fil: Hernández, Martín Alejandro. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Alvarez, Hector Manuel. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Lanfranconi, Mariana Patricia. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Silva, Roxana Alejandra. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Herrero, Marisa O.. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Villalba, María Soledad. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; Argentin

    Biology of triacylglycerol accumulation by Rhodococcus

    No full text
    Members of the genus Rhodococcus are specialist in the accumulation of triacylglycerols (TAG). Some of them can be considered oleaginous microorganisms since they are able to produce significant amounts of those lipids under certain conditions. In this context, R. opacus strain PD630 and R. jostii RHA1 became models among prokaryotes in this research area. The basic knowledge generated for rhodococci could be also extrapolated to related microorganisms with clinical importance, such as mycobacteria. The biosynthesis and accumulation of TAG by species of the genus Rhodococcus and other actinomycetes seems to be a process linked to the stationary growth phase or as a response to stress. The chemical structure of rhodococcal TAG can be controlled by the composition of the carbon source used. The biosynthesis and accumulation of novel TAG containing unusual components, such as aromatic and isoprenoid fatty acids, by members of Rhodococcus and related genera has been reported. The low specificity of wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT), which catalyze TAG biosynthesis in prokaryotes, may contribute to the high variability of TAG composition. The occurrence of genes coding for WS/DGAT enzymes is highly redundant in rhodococcal genomes. The enrichment of genes and enzymes involved in TAG metabolism in rhodococci suggest an important role of these lipids in the physiology of these microorganisms. Genomic, transcriptomic and proteomic data from TAG-accumulating rhodococci are now available and some genes coding for enzymes of the central metabolism, the Kennedy pathway, lipid transporter proteins, structural lipid inclusion bodies associated proteins, and transcriptional regulatory proteins have been identified and characterized. This article aims to summarize the most relevant achievements of basic research in this field, including the most recent knowledge emerged from studies on TAG accumulation by rhodococci.Fil: Alvarez, Hector Manuel. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Steinbüchel, Alexander. Westfälische Wilhelms Universität; Alemania. King Abdulaziz University; Arabia Saudit

    Prokaryotic Hydrocarbon Degraders

    No full text
    Hydrocarbons have been part of the biosphere for millions of years, and a diverse group of prokaryotes has evolved to use them as a source of carbon and energy. To date, the vast majority of formally defined genera are eubacterial, in 7 of the 24 major phyla currently formally recognized by taxonomists (Tree of Life, http://tolweb.org/Eubacteria. Accessed 1 Sept 2017, 2017); principally in the Actinobacteria, the Bacteroidetes, the Firmicutes, and the Proteobacteria. Some Cyanobacteria have been shown to degrade hydrocarbons on a limited scale, but whether this is of any ecological significance remains to be seen – it is likely that all aerobic organisms show some basal metabolism of hydrocarbons by nonspecific oxygenases, and similar “universal” metabolism may occur in anaerobes. This chapter focuses on the now quite large number of named microbial genera where there is reasonably convincing evidence for hydrocarbon metabolism. We have found more than 320 genera of Eubacteria, and 12 genera of Archaea. Molecular methods are revealing a vastly greater diversity of currently uncultured organisms – Hug et al. (Nat Microbiol 1:16048, 2016) claim 92 named bacterial phyla, many with almost totally unknown physiology – and it seems reasonable to believe that the catalog of genera reported here will be substantially expanded in the future
    corecore