123 research outputs found

    Acoustic and entropy waves in nozzles in combustion noise framework

    Get PDF
    A low-order model is presented to study the propagation and interaction of acoustic and entropic perturbations through a convergent-divergent nozzle. The calculations deal with choked, unchoked, as well as compact and noncompact nozzles. In the choked case, a normal shock exists in the divergent section of the nozzle. First, for circumferential waves and for a compact choked nozzle, it is shown that the pressure, entropy, and vorticity perturbations at the nozzle outlet can be obtained directly from the perturbations at the nozzle inlet. Thus, for the choked case, there is no need to model either the linear waves or the mean flow within the nozzle. Then, to validate the models developed, cylindrical configurations corresponding to the so-called Entropy Wave Generator and Hot Acoustic Testrig are studied. For the Entropy Wave Generator, an entropy wave is generated upstream of a nozzle by an electrical heating device, and for the Hot Acoustic Testrig, a speaker is used to generate pressure waves. In these two configurations and for the choked case, the supersonic region between the nozzle throat and the normal shock is assumed to be acoustically compact. The results of the low-order model are found to give excellent agreement with the experimental results of the Entropy Wave Generator and Hot Acoustic Testrig. To give insight into the physics, the model is used to undertake a parametric study for a range of nozzle lengths and shock strengths. The low-order model is finally used to calculate the direct to indirect (entropy and vorticity) combustion noise ratio for an idealized thin annular combustor. For this model combustor, the direct acoustic noise is found to dominate within the combustor, whereas the entropy indirect noise is found to be the main source of noise downstream of the choked nozzle. The indirect vorticity noise has a negligible contribution

    Measuring V_ub and probing SUSY with double ratios of purely leptonic decays of B and D mesons

    Get PDF
    The experimental prospects for precise measurements of the leptonic decays B_u -> tau nu / mu nu, B_s -> mu+ mu-, D -> mu nu and D_s -> mu nu / tau nu are very promising. Double ratios involving four of these decays can be defined in which the dependence on the values of the decay constants is essentially eliminated, thus enabling complementary measurements of the CKM matrix element V_ub with a small theoretical error. We quantify the experimental error in a possible future measurement of |V_ub| using this approach, and show that it is competitive with the anticipated precision from the conventional approaches. Moreover, it is shown that such double ratios can be more effective than the individual leptonic decays as a probe of the parameter space of supersymmetric models. We emphasize that the double ratios have the advantage of using |V_ub| as an input parameter (for which there is experimental information), while the individual decays have an uncertainty from the decay constants (e.g. f_B_s), and hence a reliance on theoretical techniques such as lattice QCD.Comment: 21 pages, 4 figure

    Supersymmetric constraints from Bs -> mu+mu- and B -> K* mu+mu- observables

    Get PDF
    We study the implications of the recent LHCb limit and results on Bs -> mu+mu- and B -> K* mu+mu- observables in the constrained SUSY scenarios. After discussing the Standard Model predictions and carefully estimating the theoretical errors, we show the constraining power of these observables in CMSSM and NUHM. The latest limit on BR(Bs -> mu+mu-), being very close to the SM prediction, constrains strongly the large tan(beta) regime and we show that the various angular observables from B -> K* mu+mu- decay can provide complementary information in particular for moderate tan(beta) values.Comment: 30 pages, 14 figure

    Hepatitis C virus infects and perturbs liver stem cells

    Get PDF
    Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism—infection of liver stem cells—to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state

    The Association between Carbohydrate Intake and Periodontal Health in the Elderly

    Get PDF
    Background and Objective: Periodontal disease is one of the most common chronic oral diseases worldwide. A variety of foods may affect periodontal health. Due to the importance of periodontal health in the old age, this study was designed to investigate the association between carbohydrate intake and periodontal health in the elderly in Amirkola, northern Iran. Methods: This cross-sectional study is part of the second phase of the Amirkola Health and Ageing Project (AHAP). The evaluated participants included 400 elderly people (200 men and 200 women). Socio-demographic data of all subjects were recorded in the information form. Periodontal status, including plaque index (PI), periodontal disease index (PDI) and Oral Hygiene Index (OHI) were evaluated. Then, the Semi-Quantitative Food Frequency Questionnaire (SQFFQ) was completed in order to receive daily carbohydrates in grams per day for all Participants. Then, the relationship between carbohydrate intake and periodontal health was evaluated. Findings: The participants consumed an average of 316±102.4 gr/day carbohydrates. The mean range of PI, OHI, PDI and in the high carbohydrate intake (>300 gr) group were 2.18±1.39, 2.84±1.51 and 1.51±0.86, respectively, and this rate was lower than the group with low carbohydrate intake (<300 gr) (1.96±1.52, 2.56±1.53 and 1.37±0.91), but the difference between the two groups was not significant. Conclusion: In the present study, there was no relationship between periodontal health indices and carbohydrate intake

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    corecore