25 research outputs found
Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer
Pancreatic cancer (PC) is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s) is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL) and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1) are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91) and compared it with those in healthy control (HC) individuals (n = 24) and patients with chronic pancreatitis (CP, n = 23). The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD) plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2), 219.2 U/mL (7.8) and 4.5 ng/mL (4.1), respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81%) but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively). For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively). CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2) pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml). Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029). Overall, MIC-1 in combination with CA19-9 improved the diagnostic accuracy of differentiating PC from CP and HCs
Is the inflammasome a potential therapeutic target in renal disease?
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases