12 research outputs found

    Generating excitotoxic lesion models of Huntington’s Disease

    No full text
    In Huntington’s disease (HD), the medium spiny projection neurons of the neostriatum degenerate early in the course of the disease. While genetic mutant models of HD provide an excellent resource for studying the molecular and cellular effects of the inherited polyQ huntingtin mutation, they do not typically present with overt atrophy of the basal ganglia, despite this being a major pathophysiological hallmark of the disease. By contrast, excitotoxic lesion models, which use quinolinic acid to specifically target the striatal projection neurons, are employed to study the functional consequences of striatal atrophy and to investigate potential therapeutic interventions that target the neuronal degeneration. This chapter provides a detailed guide to the generation of excitotoxic lesion models of HD in rats

    Striatal implants protect the host striatum against quinolinic acid toxicity.

    No full text
    Quinolinic acid (QA) and related excitotoxins produce a pattern of neuronal loss and neurochemical changes in the rat striatum similar to that of patients suffering from Huntington's disease, suggesting neurotoxicity is important in the etiology of that disease. Thus, strategies for limiting excitotoxin-induced striatal damage, like that caused by QA, may be of great benefit to these individuals. Accordingly, we tested the ability of both neural and non-neural tissue implants to protect the rat striatum against a subsequent QA challenge. Our results demonstrated that recipients of fetal striatal grafts were significantly less affected by striatal injections of QA than non-grafted animals. In contrast to the latter, fetal striatal tissue recipients did not exhibit apomorphine-induced rotation behavior and showed a sparing of cholinergic and enkephalinergic systems normally lost following QA injections. Animals grafted with adult rat sciatic nerve, adrenal medulla or adipose tissue all showed a less dramatic behavioral protection and sparing of cholinergic and enkephalinergic systems. These results suggest that fetal striatal tissue exerts an optimal, and perhaps specific protective influence on the host brain

    Basal Forebrain Cholinergic Neurons and Alzheimer’s Disease

    No full text
    corecore