49 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Effects of acute substance use and pre-injury substance abuse on traumatic brain injury severity in adults admitted to a trauma centre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to describe the occurrence of substance use at the time of injury and pre-injury substance abuse in patients with moderate-to-severe traumatic brain injury (TBI). Effects of acute substance use and pre-injury substance abuse on TBI severity were also investigated.</p> <p>Methods</p> <p>A prospective study of 111 patients, aged 16-55 years, injured from May 2005 to May 2007 and hospitalised at the Trauma Referral Centre in Eastern Norway with acute TBI (Glasgow Coma Scale 3-12). Based on structural brain damages shown on a computed tomography (CT) scan, TBI severity was defined by modified Marshall classification as less severe (score <3) and more severe (score ≥3). Clinical definition of substance use (alcohol and/or other psychoactive substances) was applied when hospital admission records reflected blood alcohol levels or a positive drug screen, or when a physician verified influence by examining the patient. Pre-injury substance abuse (alcohol and drug problems) was screened by using the CAGE questionnaire.</p> <p>Results</p> <p>Forty-seven percent of patients were positive for substance use on admission to hospital. Significant pre-injury substance abuse was reported by 26% of patients. Substance use at the time of injury was more frequent in the less severe group (p = 0.01). The frequency of pre-injury substance abuse was higher in the more severe group (30% vs. 23%). In a logistic regression model, acute substance use at time of injury tended to decrease the probability of more severe intracranial injury, but the effect was not statistically significant after adjusting for age, gender, education, cause of injury and substance abuse, OR = 0.39; 95% CI 0.11-1.35, p = 0.14. Patients with positive screens for pre-injury substance abuse (CAGE ≥2) were more likely to have more severe TBI in the adjusted regression analyses, OR = 4.05; 95% CI 1.10-15.64, p = 0.04.</p> <p>Conclusions</p> <p>Acute <b>s</b>ubstance use was more frequent in patients with less severe TBI caused by low-energy events such as falls, violence and sport accidents. Pre-injury substance abuse increased the probability of more severe TBI caused by high-energy trauma such as motor vehicle accidents and falls from higher levels. Preventive efforts to reduce substance consumption and abuse in at-risk populations are needed.</p

    Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brownian Dynamics (BD) is a coarse-grained implicit-solvent simulation method that is routinely used to investigate binary protein association dynamics, but due to its efficiency in handling large simulation volumes and particle numbers it is well suited to also describe many-protein scenarios as they often occur in biological cells.</p> <p>Results</p> <p>Here we introduce our "brownmove" simulation package which was designed to handle many-particle problems with varying particle numbers and allows for a very flexible definition of rigid and flexible protein and polymer models. Both a Brownian and a Langevin dynamics (LD) propagation scheme can be used and hydrodynamic interactions are treated efficiently with our recently introduced TEA-HI ansatz [Geyer, Winter, JCP 130 (2009) 114905]. With simulations of constrained polymers and flexible models of spherical proteins we demonstrate that it is crucial to include hydrodynamics when multi-bead models are used in BD or LD simulations. Only then both the translational and the rotational diffusion coefficients and the timescales of the internal dynamics can be reproduced correctly. In the third example project we show how constant density boundary conditions [Geyer et al, JCP 120 (2004) 4573] can be used to set up a non-equilibrium simulation of diffusional transport across an array of fixed obstacles. Finally, we demonstrate how the agglomeration dynamics of multiple particles with attractive patches can be analysed conveniently with the help of a dynamic interaction network.</p> <p>Conclusions</p> <p>Combining BD and LD propagation, fast hydrodynamics, a flexible protein model, and interfaces for "open" simulation settings, our freely available "brownmove" simulation package constitutes a new platform for coarse-grained many-particle simulations of biologically relevant diffusion and transport processes.</p

    Minimal invasive surgery for coronoid fracture: technical note.

    Get PDF
    Operative treatment of coronoid fracture often requires a large dissection of soft tissue, resulting in elbow stiffness and functional limitation. The authors present a minimal invasive, safe technique, useful in the case of isolated coronoid fracture associated with elbow dislocation. This technique does not require soft tissue dissection and allows an early unlimited resumption of sports activities

    Sites and Mechanisms of Action of Antipsychotic Drugs as Revealed by Immediate-Early Gene Expression

    No full text
    corecore