44 research outputs found

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p

    Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia

    Get PDF
    The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARγ) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including modulation of oxidative stress and PPARγ. Therefore, we tested the hypothesis that vanin-1 drives SMC activation and neointimal hyperplasia. We studied reactive oxygen species (ROS) generation and functional responses to platelet-derived growth factor (PDGF) and the pro-oxidant diamide in cultured mouse aortic SMCs, and also assessed neointima formation after carotid artery ligation in vanin-1 deficiency. Vnn1−/− SMCs demonstrated decreased oxidative stress, proliferation, migration, and matrix metalloproteinase 9 (MMP-9) activity in response to PDGF and/or diamide, with the effects on proliferation linked, in these studies, to both increased GSH levels and PPARγ expression. Vnn1−/− mice displayed markedly decreased neointima formation in response to carotid artery ligation, including decreased intima:media ratio and cross-sectional area of the neointima. We conclude that vanin-1, via dual modulation of GSH and PPARγ, critically regulates the activation of cultured SMCs and development of neointimal hyperplasia in response to carotid artery ligation. Vanin-1 is a novel potential therapeutic target for neointimal hyperplasia following revascularization

    Salt loading in canola oil fed SHRSP rats induces endothelial dysfunction

    Get PDF
    This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression

    Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization.

    Get PDF
    In sub-Saharan Africa, invasive nontyphoid Salmonella (NTS) infection is a common and often fatal complication of Plasmodium falciparum infection. Induction of heme oxygenase-1 (HO-1) mediates tolerance to the cytotoxic effects of heme during malarial hemolysis but might impair resistance to NTS by limiting production of bactericidal reactive oxygen species. We show that co-infection of mice with Plasmodium yoelii 17XNL (Py17XNL) and Salmonella enterica serovar Typhimurium 12023 (Salmonella typhimurium) causes acute, fatal bacteremia with high bacterial load, features reproduced by phenylhydrazine-induced hemolysis or hemin administration. S. typhimurium localized predominantly in granulocytes. Py17XNL, phenylhydrazine and hemin caused premature mobilization of granulocytes from bone marrow with a quantitative defect in the oxidative burst. Inhibition of HO by tin protoporphyrin abrogated the impairment of resistance to S. typhimurium by hemolysis. Thus, a mechanism of tolerance to one infection, malaria, impairs resistance to another, NTS. Furthermore, HO inhibitors may be useful adjunctive therapy for NTS infection in the context of hemolysis
    corecore