15 research outputs found
Distribution of laminin, vimentin and desmin in the rat uterus during initial stages of implantation
Does dexmedetomidine reduce secondary damage after spinal cord injury? An experimental study
The aim of this experimental study was to investigate the possible protective effect of dexmedetomidine (DEX) on traumatic spinal cord injury (SCI). Twenty-two New Zealand rabbits were divided into three groups: sham (no drug or operation, n = 6), Control [SCI + single dose of 1 mL saline intraperitoneally (i.p), after trauma; n = 8] and DEX (SCI + 1 μg/kg dexmedetomidine in 1 mL, i.p, after trauma, n = 8). Laminectomy was performed at T10 and balloon angioplasty catheter was applied extradurally. Four and 24 h after surgery, rabbits were evaluated by an independent observer according to the Tarlov scoring system. Blood, cerebrospinal fluid (CSF), tissue samples from spinal cord were taken for biochemical and histopathological evaluations. After 4 h of SCI, all animals in control or DEX treated groups became paraparesic. On the other hand, 24 h after SCI, partial improvements were observed in both control and DEX treated groups. Traumatic SCI leads to increase in the lipid peroxidation and decreases enzymatic or nonenzymatic endogenous antioxidative defense systems. Again, SCI leads to apoptosis in spinal cord. DEX treatment slightly prevented lipid peroxidation and augmented endogenous antioxidative defense systems in CSF or spinal cord tissue, but failed to prevent apoptosis or neurodeficit after traumatic SCI. Therefore, it could be suggested that treatment with dexmedetomidine does not produce beneficial results in SCI
Dantrolene can reduce secondary damage after spinal cord injury
The aim of this experimental study was to investigate the possible protective effects of dantrolene on traumatic spinal cord injury (SCI). Twenty-four New Zealand rabbits were divided into three groups: Sham (no drug or operation, n = 8), Control (SCI + 1 mL saline intraperitoneally (i.p.), n = 8), and DNT (SCI + 10 mg/kg dantrolene in 1 mL, i.p., n = 8). Laminectomy was performed at T10 and balloon catheter was applied extradurally. Four and 24 h after surgery, rabbits were evaluated according to the Tarlov scoring system. Blood, cerebrospinal fluid and tissue sample from spinal cord were taken for measurements of antioxidant status or detection of apoptosis. After 4 h SCI, all animals in control or DNT-treated groups became paraparesic. Significant improvement was observed in DNT-treated group, 24 h after SCI, with respect to control. Traumatic SCI led to an increase in the lipid peroxidation and a decrease in enzymic or non-enzymic endogenous antioxidative defense systems, and increase in apoptotic cell numbers. DNT treatment prevented lipid peroxidation and augmented endogenous enzymic or non-enzymic antioxidative defense systems. Again, DNT treatment significantly decreased the apoptotic cell number induced by SCI. In conclusion, experimental results observed in this study suggest that treatment with dantrolene possess potential benefits for traumatic SCI