315 research outputs found

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria

    Get PDF
    The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks premorphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll’s ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila

    Get PDF
    Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively

    Molecular Evolution and Functional Divergence of the Cytochrome P450 3 (CYP3) Family in Actinopterygii (Ray-Finned Fish)

    Get PDF
    The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable.Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family.The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family
    • …
    corecore