15 research outputs found

    Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples

    Get PDF
    A collection of 76 synthetic organic pigments was analysed using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The purpose of this work was to expand the knowledge on synthetic pigments and to assess characteristic pyrolysis products that could help in the identification of these pigments in paint samples. We analysed several classes of synthetic pigments not previously reported as being analysed by this technique: some metal complexes, β-naphthol pigment lakes, BONA pigment lakes, disazopyrazolone, triarylcarbonium, dioxazine, anthraquinone, indanthrone, isoindoline and thioindigo classes. We also report for the first time the Py-GC/MS analysis of a number of naphthol AS, benzimidazolone, phthalocyanine and perylene pigments and other miscellaneous pigments including pigments with unpublished chemical structure. We successfully used the Py-GC/MS technique for the analysis of paints by artists Clyfford Still and Jackson Pollock to identify the synthetic organic pigments and the binding media

    HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives

    Get PDF
    The characterisation of atelier materials and of the historical commercial formulation of paint materials has recently gained new interest in the field of conservation science applied to modern and contemporary art, since modern paint materials are subjected to peculiar and often unpredictable degradation and fading processes. Assessing the composition of the original materials purchased by artists can guide not only their identification in works of art, but also their restoration and conservation. Advances in characterisation methods and models for data interpretation are particularly important in studying organic coloring materials in the transition period corresponding to the late 19th-early 20th century, when many such variants or combinations were hypothetically possible in their formulations. There is thus a need for reliable databases of materials introduced in that period and for gaining chemical knowledge at a molecular level related to modern organic pigments, by state-of-the-art protocols. This paper reports on the results of a study on 44 samples of historical colorants in powder and paint tubes, containing both lake pigments and synthetic organic pigments dating from 1890 to 1926. The samples were collected at the Lefranc Archive in Le Mans (France) as a part of Project Futurahma "From Futurism to Classicism (1910-1922). Research, Art History and Material Analysis", (FIRB2012, Italian Ministry of University and Research), and were investigated using an analytical approach based on chromatographic and mass spectrometric techniques. The focus of the chemical analyses was to reveal the composition of the historical organic lake pigments including minor components, to discriminate between different recipes for the extraction of chromophore-containing molecules from the raw materials, and ultimately to distinguish between different formulations and recipes. High performance liquid chromatography (HPLC) with diode array detector (DAD) or electrospray-Quadrupole-Time of Flight tandem mass spectrometry detector (ESI-Q-ToF) were chosen given their considerable capacity to identify such complex and widespread organic materials. Although the inorganic components of the pigments were not taken into account in this survey, the specific molecular profiles provided invaluable information on the extraction procedures or synthetic strategy followed by the different producers, at different times. For instance, the use of Kopp's purpurin and garancine was highlighted, and synthetic by-products were identified. The results provided evidence that the addition of synthetic organic pigments to paint mixtures started from 1910 onwards, but they also suggest that in the formulation of high quality (surfin) colorants, natural products were still preferred. Moreover, in one of the samples the use of murexide as the colouring material was confirmed. This paper presents the first systematic and comprehensive survey on organic lakes and pigments belonging to an historical archive, by both HPLC-DAD and HPLC-ESI-Q-ToF. Specific by-products of synthetic production of pigments, which can act as specific molecular markers for dating or locating a work of art, were also identified for the first time

    Insight into Sam Francis’ painting techniques through the analytical study of twenty-eight artworks made between 1946 and 1992

    Full text link
    The present paper proposes an overview of the painting materials experimented with over the years by Sam Francis, leading figure of the post-World War II American painting, through the analytical study of an extended number of paint samples supplied by the Sam Francis Foundation. In total, 279 samples taken from twenty-eight artworks made between 1946 and 1992, were analyzed by Raman, FTIR and Py–GC/MS techniques. The obtained results revealed the Francis’ preference in terms of pigments, i.e., phthalocyanine blues and greens, and outlined unconventional combination of binder media

    Distinction by micro-Raman spectroscopy and chemometrical analysis of copper phthalocyanine blue polymorphs in oil-based and acrylic samples

    Full text link
    peer reviewedCopper phthalocyanine (CuPc) blue, commonly named phthalo blue is the most important synthetic organic blue pigment in the 20th and 21st century artists paints. Phthalo blue, which is adopted by artists since 1936, is a polymorphous pigment. Currently, the alpha, beta and epsilon CuPc polymorphs are used in artists paint formulations. The identification of the CuPc crystal form provides technical and chronological information relevant for studying artworks. Raman Spectroscopy (RS) is a very valuable technique for the detection of phthalo blue in paint layers. However, the spectral interpretation is not straightforward concerning the CuPc polymorph distinction. To overcome the problem we have previously developed a procedure combining RS and chemometrical analysis. The experimental results that we obtained have demonstrated its efficiency for predicting the CuPc crystal form in unknown paint samples. In the present work, this procedure was applied on oil-based and acrylic paints from Sam Francis’ studio and the Getty Conservation Institute (GCI) Reference Collection
    corecore