256 research outputs found
Electronic structure and dimerization of a single monatomic gold wire
The electronic structure of a single monatomic gold wire is presented for the
first time. It has been obtained with state-of-the-art ab-initio full-potential
density-functional (DFT) LMTO (linearized muffin-tin orbital) calculations
taking into account relativistic effects. For stretched structures in the
experimentally accessible range the conduction band is exactly half-filled,
whereas the band structures are more complex for the optimized structure. By
studying the total energy as a function of unit-cell length and of a possible
bond-length alternation we find that the system can lower its total energy by
letting the bond lengths alternate leading to a structure containing separated
dimers with bond lengths of about 2.5 \AA, largely independent of the
stretching. However, first for fairly large unit cells (above roughly 7 \AA),
is the total-energy gain upon this dimerization comparable with the energy
costs upon stretching. We propose that this together with band-structure
effects is the reason for the larger interatomic distances observed in recent
experiments. We find also that although spin-orbit couplings lead to
significant effects on the band structure, the overall conclusions are not
altered, and that finite Au_2, Au_4, and Au_6 chains possess electronic
properties very similar to those of the infinite chain.Comment: (14 pages, 5 figures; Elsevier Preprint style elsart.sty
Quasi-pinning and entanglement in the lithium isoelectronic series
The Pauli exclusion principle gives an upper bound of 1 on the natural
occupation numbers. Recently there has been an intriguing amount of theoretical
evidence that there is a plethora of additional generalized Pauli restrictions
or (in)equalities, of kinematic nature, satisfied by these numbers. Here for
the first time a numerical analysis of the nature of such constraints is
effected in real atoms. The inequalities are nearly saturated, or quasi-pinned.
For rank-six and rank-seven approximations for lithium, the deviation from
saturation is smaller than the lowest occupancy number. For a rank-eight
approximation we find well-defined families of saturation conditions.Comment: 22 pages, 6 figures, minor changes, references adde
Quasipinning and selection rules for excitations in atoms and molecules
Postulated by Pauli to explain the electronic structure of atoms and molecules, the exclusion principle establishes an upper bound of 1 for fermionic natural occupation numbers {ni }. A recent analysis of the pure N-representability problem provides a wide set of inequalities for the {ni}, leading to constraints on these numbers. This has a strong potential impact on reduced density matrix functional theory as we know it. In this work we continue our study of the nature of these inequalities for some atomic and molecular systems. The results indicate that (quasi)saturation of some of them leads to selection rules for the dominant configurations in configuration interaction expansions, in favorable cases providing means for significantly reducing their computational requirements
Peierls Instabilities in Quasi-One-Dimensional Quantum Double-Well Chains
Peierls-type instabilities in quarter-filled () and half-filled
() quantum double-well hydrogen-bonded chain are investigated
analytically in the framework of two-stage orientational-tunnelling model with
additional inclusion of the interactions of protons with two different optical
phonon branches. It is shown that when the energy of proton-phonon coupling
becomes large, the system undergoes a transition to a various types of
insulator states. The influence of two different transport amplitudes on ground
states properties is studied. The results are compared with the pressure effect
experimental investigations in superprotonic systems and hydrogen halides at
low temperatures.Comment: 7 pages, RevTeX, 9 eps figure
One Dimensional Kondo Lattice Model Studied by the Density Matrix Renormalization Group Method
Recent developments of the theoretical investigations on the one-dimensional
Kondo lattice model by using the density matrix renormalization group (DMRG)
method are discussed in this review. Short summaries are given for the
zero-temperature DMRG, the finite-temperature DMRG, and also its application to
dynamic quantities. Away from half-filling, the paramagnetic metallic state is
shown to be a Tomonaga-Luttinger liquid with the large Fermi surface. For the
large Fermi surface its size is determined by the sum of the densities of the
conduction electrons and the localized spins. The correlation exponent K_rho of
this metallic phase is smaller than 1/2. At half-filling the ground state is
insulating. Excitation gaps are different depending on channels, the spin gap,
the charge gap and the quasiparticle gap. Temperature dependence of the spin
and charge susceptibilities and specific heat are discussed. Particularly
interesting is the temperature dependence of various excitation spectra, which
show unusual properties of the Kondo insulators.Comment: 18 pages, 23 Postscript figures, REVTe
Ab initio many-body calculations on infinite carbon and boron-nitrogen chains
In this paper we report first-principles calculations on the ground-state
electronic structure of two infinite one-dimensional systems: (a) a chain of
carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield
results were obtained using the restricted Hartree-Fock approach, while the
many-body effects were taken into account by second-order M{\o}ller-Plesset
perturbation theory and the coupled-cluster approach. The calculations were
performed using 6-31 basis sets, including the d-type polarization
functions. Both at the Hartree-Fock (HF) and the correlated levels we find that
the infinite carbon chain exhibits bond alternation with alternating single and
triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In
addition, we also performed density-functional-theory-based local density
approximation (LDA) calculations on the infinite carbon chain using the same
basis set. Our LDA results, in contradiction to our HF and correlated results,
predict a very small bond alternation. Based upon our LDA results for the
carbon chain, which are in agreement with an earlier LDA calculation
calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488
(1998).], we conclude that the LDA significantly underestimates Peierls
distortion. This emphasizes that the inclusion of many-particle effects is very
important for the correct description of Peierls distortion in one-dimensional
systems.Comment: 3 figures (included). To appear in Phys. Rev.
Hydrogen atom in phase space. The Kirkwood-Rihaczek representation
We present a phase-space representation of the hydrogen atom using the
Kirkwood-Rikaczek distribution function. This distribution allows us to obtain
analytical results, which is quite unique because an exact analytical form of
the Wigner functions corresponding to the atom states is not known. We show how
the Kirkwood-Rihaczek distribution reflects properties of the hydrogen atom
wave functions in position and momentum representations.Comment: 5 pages (and 5 figures
Using the local density approximation and the LYP, BLYP, and B3LYP functionals within Reference--State One--Particle Density--Matrix Theory
For closed-shell systems, the local density approximation (LDA) and the LYP,
BLYP, and B3LYP functionals are shown to be compatible with reference-state
one-particle density-matrix theory, where this recently introduced formalism is
based on Brueckner-orbital theory and an energy functional that includes exact
exchange and a non-universal correlation-energy functional. The method is
demonstrated to reduce to a density functional theory when the
exchange-correlation energy-functional has a simplified form, i.e., its
integrand contains only the coordinates of two electron, say r1 and r2, and it
has a Dirac delta function -- delta(r1 - r2) -- as a factor. Since Brueckner
and Hartree--Fock orbitals are often very similar, any local exchange
functional that works well with Hartree--Fock theory is a reasonable
approximation with reference-state one-particle density-matrix theory. The LDA
approximation is also a reasonable approximation. However, the Colle--Salvetti
correlation-energy functional, and the LYP variant, are not ideal for the
method, since these are universal functionals. Nevertheless, they appear to
provide reasonable approximations. The B3LYP functional is derived using a
linear combination of two functionals: One is the BLYP functional; the other
uses exact exchange and a correlation-energy functional from the LDA.Comment: 26 Pages, 0 figures, RevTeX 4, Submitted to Mol. Phy
- …