440 research outputs found
Exercise and Sport Performance with Low Doses of Caffeine
Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5–13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis
Recommended from our members
Role of Positron Emission Tomography in Imaging of Non-neurologic Disorders of the Head, Neck, and Teeth in Veterinary Medicine.
Positron Emission Tomography (PET) is an imaging technique that provides functional information, in addition to structural information obtained with computed tomography (CT). The most common application is cancer staging, using 18F-Fluorodeoxyglucose (18F-FDG), a radioactive analog of glucose. Although limited data are available in the veterinary literature, human studies have demonstrated benefit with the addition of PET both for assessment of the primary tumor and for detection of metastatic disease. 18F-FDG PET appears to be more accurate at detecting the margin of oral neoplasia, in particular for tumors arising from highly vascularized tissue, such as the lingual and laryngeal areas. 18F-FDG PET has a high sensitivity for the detection of lymph node metastasis, however the specificity is variable between studies. Tracers beyond 18F-FDG can also be used for oncology imaging. 18F-Fluoride (18F-NaF) is an excellent osseous tracer, useful in assessing bone involvement of primary tumors or osseous metastasis. Other specific tracers can be used to assess cell proliferation or hypoxia for tumor characterization. 18F-FDG is also an excellent tracer for detection of inflammation. Human studies have demonstrated its value for the assessment of periodontitis and dental implant infection. 18F-NaF has been used to assess disorders of the temporomandibular joint in the human literature, demonstrating good correlation with arthralgia and therapeutic outcome. Both 18F-NaF and 18F-FDG had good concordance with localization of cervical pain in people. PET will likely have a growing role in veterinary medicine not only for oncologic imaging but also for assessment of inflammation and pain
Estimated sweat loss, fluid and CHO intake, and sodium balance of male major junior, AHL, and NHL players during on-ice practices
Several previous studies have reported performance decrements in team sport athletes who dehydrated approximately 1.5–2% of their body mass (BM) through sweating. This study measured on-ice sweat loss, fluid intake, sodium balance, and carbohydrate (CHO) intake of 77 major junior (JR; 19 ± 1 years), 60 American Hockey League (AHL; 24 ± 4 years), and 77 National Hockey League (NHL; 27 ± 5 years) players. Sweat loss was calculated from pre- to post-exercise BM plus fluid intake minus urine loss. AHL (2.03 ± 0.62 L/hr) and NHL (2.02 ± 0.74 L/hr) players had higher sweat rates (p  .05). Sodium deficits (sodium loss − intake) were greater (p 2% BM) during 60 min of practice. However, ∼15%, 41%, and 48% of the JR, AHL, and NHL players, respectively, may have reached mild dehydration and increased risk of performance decrements in a 90-min practice
Sodium bicarbonate ingestion and individual variability in time to peak pH
The aim of this study was to determine the individual variability in time to peak pH after the consumption of a 300mg.kg-1 dose of sodium bicarbonate (NaHCO3). Seventeen active males volunteered to participate in the study (mean ± SD: age 21.38 ± 1.5y; mass 75.8 ± 5.8kg; height 176.8 ± 7.6cm). Participants reported to the laboratory where a resting capillary blood sample was taken aseptically from the fingertip. After this, 300 mg.kg-1 of NaHCO3 in 400ml of water with 50ml of flavoured cordial was ingested. Participants then rested for 90 min during which repeated blood samples were procured at 10 minute intervals for 60 mins and then every 5 min until 90 min. Blood pH concentrations were measured using a blood gas analyser. Results suggested that time to peak pH (64.41±18.78 min) was highly variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bi-modal distribution occurred, at 65 and 75 min. In conclusion, researchers and athletes, when using NaHCO3 as an ergogenic aid, should determine, in advance their time to peak pH to best utilise the added buffering capacity this substance allows
Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle
The mechanistic target of rapamycin (mTOR) is a central mediator of protein synthesis in skeletal muscle. We utilized immunofluorescence approaches to study mTOR cellular distribution and protein-protein co-localisation in human skeletal muscle in the basal state as well as immediately, 1 and 3 h after an acute bout of resistance exercise in a fed (FED; 20 g Protein/40 g carbohydrate/1 g fat) or energy-free control (CON) state. mTOR and the lysosomal protein LAMP2 were highly co-localised in basal samples. Resistance exercise resulted in rapid translocation of mTOR/LAMP2 towards the cell membrane. Concurrently, resistance exercise led to the dissociation of TSC2 from Rheb and increased in the co-localisation of mTOR and Rheb post exercise in both FED and CON. In addition, mTOR co-localised with Eukaryotic translation initiation factor 3 subunit F (eIF3F) at the cell membrane post-exercise in both groups, with the response significantly greater at 1 h of recovery in the FED compared to CON. Collectively our data demonstrate that cellular trafficking of mTOR occurs in human muscle in response to an anabolic stimulus, events that appear to be primarily influenced by muscle contraction. The translocation and association of mTOR with positive regulators (i.e. Rheb and eIF3F) is consistent with an enhanced mRNA translational capacity after resistance exercise
- …