1,542 research outputs found
Linear Memory Networks
Recurrent neural networks can learn complex transduction problems that
require maintaining and actively exploiting a memory of their inputs. Such
models traditionally consider memory and input-output functionalities
indissolubly entangled. We introduce a novel recurrent architecture based on
the conceptual separation between the functional input-output transformation
and the memory mechanism, showing how they can be implemented through different
neural components. By building on such conceptualization, we introduce the
Linear Memory Network, a recurrent model comprising a feedforward neural
network, realizing the non-linear functional transformation, and a linear
autoencoder for sequences, implementing the memory component. The resulting
architecture can be efficiently trained by building on closed-form solutions to
linear optimization problems. Further, by exploiting equivalence results
between feedforward and recurrent neural networks we devise a pretraining
schema for the proposed architecture. Experiments on polyphonic music datasets
show competitive results against gated recurrent networks and other state of
the art models
Conformance Checking Based on Multi-Perspective Declarative Process Models
Process mining is a family of techniques that aim at analyzing business
process execution data recorded in event logs. Conformance checking is a branch
of this discipline embracing approaches for verifying whether the behavior of a
process, as recorded in a log, is in line with some expected behaviors provided
in the form of a process model. The majority of these approaches require the
input process model to be procedural (e.g., a Petri net). However, in turbulent
environments, characterized by high variability, the process behavior is less
stable and predictable. In these environments, procedural process models are
less suitable to describe a business process. Declarative specifications,
working in an open world assumption, allow the modeler to express several
possible execution paths as a compact set of constraints. Any process execution
that does not contradict these constraints is allowed. One of the open
challenges in the context of conformance checking with declarative models is
the capability of supporting multi-perspective specifications. In this paper,
we close this gap by providing a framework for conformance checking based on
MP-Declare, a multi-perspective version of the declarative process modeling
language Declare. The approach has been implemented in the process mining tool
ProM and has been experimented in three real life case studies
LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances
Predicting the completion time of business process instances would be a very
helpful aid when managing processes under service level agreement constraints.
The ability to know in advance the trend of running process instances would
allow business managers to react in time, in order to prevent delays or
undesirable situations. However, making such accurate forecasts is not easy:
many factors may influence the required time to complete a process instance. In
this paper, we propose an approach based on deep Recurrent Neural Networks
(specifically LSTMs) that is able to exploit arbitrary information associated
to single events, in order to produce an as-accurate-as-possible prediction of
the completion time of running instances. Experiments on real-world datasets
confirm the quality of our proposal.Comment: Article accepted for publication in 2017 IEEE Symposium on Deep
Learning (IEEE DL'17) @ SSC
A tree-based kernel for graphs with continuous attributes
The availability of graph data with node attributes that can be either
discrete or real-valued is constantly increasing. While existing kernel methods
are effective techniques for dealing with graphs having discrete node labels,
their adaptation to non-discrete or continuous node attributes has been
limited, mainly for computational issues. Recently, a few kernels especially
tailored for this domain, and that trade predictive performance for
computational efficiency, have been proposed. In this paper, we propose a graph
kernel for complex and continuous nodes' attributes, whose features are tree
structures extracted from specific graph visits. The kernel manages to keep the
same complexity of state-of-the-art kernels while implicitly using a larger
feature space. We further present an approximated variant of the kernel which
reduces its complexity significantly. Experimental results obtained on six
real-world datasets show that the kernel is the best performing one on most of
them. Moreover, in most cases the approximated version reaches comparable
performances to current state-of-the-art kernels in terms of classification
accuracy while greatly shortening the running times.Comment: This work has been submitted to the IEEE Transactions on Neural
Networks and Learning Systems for possible publication. Copyright may be
transferred without notice, after which this version may no longer be
accessibl
An Empirical Study on Budget-Aware Online Kernel Algorithms for Streams of Graphs
Kernel methods are considered an effective technique for on-line learning.
Many approaches have been developed for compactly representing the dual
solution of a kernel method when the problem imposes memory constraints.
However, in literature no work is specifically tailored to streams of graphs.
Motivated by the fact that the size of the feature space representation of many
state-of-the-art graph kernels is relatively small and thus it is explicitly
computable, we study whether executing kernel algorithms in the feature space
can be more effective than the classical dual approach. We study three
different algorithms and various strategies for managing the budget. Efficiency
and efficacy of the proposed approaches are experimentally assessed on
relatively large graph streams exhibiting concept drift. It turns out that,
when strict memory budget constraints have to be enforced, working in feature
space, given the current state of the art on graph kernels, is more than a
viable alternative to dual approaches, both in terms of speed and
classification performance.Comment: Author's version of the manuscript, to appear in Neurocomputing
(ELSEVIER
Heuristics Miners for Streaming Event Data
More and more business activities are performed using information systems.
These systems produce such huge amounts of event data that existing systems are
unable to store and process them. Moreover, few processes are in steady-state
and due to changing circumstances processes evolve and systems need to adapt
continuously. Since conventional process discovery algorithms have been defined
for batch processing, it is difficult to apply them in such evolving
environments. Existing algorithms cannot cope with streaming event data and
tend to generate unreliable and obsolete results.
In this paper, we discuss the peculiarities of dealing with streaming event
data in the context of process mining. Subsequently, we present a general
framework for defining process mining algorithms in settings where it is
impossible to store all events over an extended period or where processes
evolve while being analyzed. We show how the Heuristics Miner, one of the most
effective process discovery algorithms for practical applications, can be
modified using this framework. Different stream-aware versions of the
Heuristics Miner are defined and implemented in ProM. Moreover, experimental
results on artificial and real logs are reported
“A Basket of Mysteries” A Cognitive Linguistic Analysis of Rita Dove’s reworking of Greek myths
This dissertation consists of a cognitive linguistic analysis of two works written by the American poet Rita Dove, the play "The Darker Face of the Earth" and the collection of sonnets "Mother Love". The aim of my work is to analyse, from a cognitive perspective, the creative process involved in the reception and interpretation of ancient Greek myths and their re-adaptation and reinvention in a specific African American context.
The linguistic data are elicited from "The Darker Face of the Earth" and "Mother Love" and, in addition, from Dove’s interviews, in which the author is explicit about her use of myth and its relation with the modern and contemporary world. I collected linguistic data through a close reading and a linguistic analysis of Dove’s texts in combination with a linguistic analysis of Greek parallels.
My work is situated within the theoretical framework of the cognitive approach to literary studies. Over the last thirty years, scholars in the humanities have integrated insights from the cognitive sciences into their research, demonstrating the productivity of such an approach. Cognitive literary studies is not a unified theory, instead it has come to be understood as a broad “field” with different methodologies, assumptions and committments. My own approach to literary discourse is based on cognitive linguistics. Specifically, I follow the development of Conceptual Metaphor Theory and Turner and Fauconnier’s theory of blending as applied to literature. Through Conceptual Blending Theory (CBT) and Conceptual Metaphor Theory (CMT), I have given an account of Dove’s works on different levels. In my work, I have concentrated on several areas, from larger to smaller scale levels, such as story-plots, episodes, formation of characters, highly lyrical and compressed metaphorical imagery. I have shown how CBT and CMT can contribute to an understanding of the production of a literary text, while, at the same time, developing a new approach to the study of classical reception. A cognitive linguistic approach to literary discourse, and specifically to Dove’s reception of the classics, is highly productive in unravelling the complexity of literary works that blend different histories and literary traditions, in explaining Dove’s process of mythologising history and historicising myth, and in providing a plausible explanation and interpretation of creative poetic metaphor and imagery
- …