1,604 research outputs found
Topological discrete kinks
A spatially discrete version of the general kink-bearing nonlinear
Klein-Gordon model in (1+1) dimensions is constructed which preserves the
topological lower bound on kink energy. It is proved that, provided the lattice
spacing h is sufficiently small, there exist static kink solutions attaining
this lower bound centred anywhere relative to the spatial lattice. Hence there
is no Peierls-Nabarro barrier impeding the propagation of kinks in this
discrete system. An upper bound on h is derived and given a physical
interpretation in terms of the radiation of the system. The construction, which
works most naturally when the nonlinear Klein-Gordon model has a squared
polynomial interaction potential, is applied to a recently proposed continuum
model of polymer twistons. Numerical simulations are presented which
demonstrate that kink pinning is eliminated, and radiative kink deceleration
greatly reduced in comparison with the conventional discrete system. So even on
a very coarse lattice, kinks behave much as they do in the continuum. It is
argued, therefore, that the construction provides a natural means of
numerically simulating kink dynamics in nonlinear Klein-Gordon models of this
type. The construction is compared with the inverse method of Flach, Zolotaryuk
and Kladko. Using the latter method, alternative spatial discretizations of the
twiston and sine-Gordon models are obtained which are also free of the
Peierls-Nabarro barrier.Comment: 14 pages LaTeX, 7 postscript figure
A quantum Peierls-Nabarro barrier
Kink dynamics in spatially discrete nonlinear Klein-Gordon systems is
considered. For special choices of the substrate potential, such systems
support continuous translation orbits of static kinks with no (classical)
Peierls-Nabarro barrier. It is shown that these kinks experience, nevertheless,
a lattice-periodic confining potential, due to purely quantum effects anaolgous
to the Casimir effect of quantum field theory. The resulting ``quantum
Peierls-Nabarro potential'' may be calculated in the weak coupling
approximation by a simple and computationally cheap numerical algorithm, which
is applied, for purposes of illustration, to a certain two-parameter family of
substrates.Comment: 13 pages LaTeX, 7 figure
Magnetic bubble refraction and quasibreathers in inhomogeneous antiferromagnets
The dynamics of magnetic bubble solitons in a two-dimensional isotropic
antiferromagnetic spin lattice is studied, in the case where the exchange
integral J(x,y) is position dependent. In the near continuum regime, this
system is described by the relativistic O(3) sigma model on a spacetime with a
spatially inhomogeneous metric, determined by J. The geodesic approximation is
used to describe low energy soliton dynamics in this system: n-soliton motion
is approximated by geodesic motion in the moduli space of static n-solitons,
equipped with the L^2 metric. Explicit formulae for this metric for various
natural choices of J(x,y) are obtained. From these it is shown that single
soliton trajectories experience refraction, with 1/J analogous to the
refractive index, and that this refraction effect allows the construction of
simple bubble lenses and bubble guides. The case where J has a disk
inhomogeneity (taking the value J_1 outside a disk, and J_2<J_1 inside) is
considered in detail. It is argued that, for sufficiently large J_1/J_2 this
type of antiferromagnet supports approximate quasibreathers: two or more
coincident bubbles confined within the disk which spin internally while their
shape undergoes periodic oscillations with a generically incommensurate period.Comment: Conference proceedings paper for talk given at Nonlinear Physics
Theory and Experiment IV, Gallipoli, Italy, June 200
The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps
The most fruitful approach to studying low energy soliton dynamics in field
theories of Bogomol'nyi type is the geodesic approximation of Manton. In the
case of vortices and monopoles, Stuart has obtained rigorous estimates of the
errors in this approximation, and hence proved that it is valid in the low
speed regime. His method employs energy estimates which rely on a key
coercivity property of the Hessian of the energy functional of the theory under
consideration. In this paper we prove an analogous coercivity property for the
Hessian of the energy functional of a general sigma model with compact K\"ahler
domain and target. We go on to prove a continuity property for our result, and
show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive
in the degree 1 sector. We present numerical evidence which suggests that the
Hessian is globally coercive in a certain equivariance class of the degree n
sector for n>1. We also prove that, within the geodesic approximation, a single
CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded
discussion of the main function spac
Kink Dynamics in a Topological Phi^4 Lattice
It was recently proposed a novel discretization for nonlinear Klein-Gordon
field theories in which the resulting lattice preserves the topological
(Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no
Peierls-Nabarro barrier even for large spatial discretizations (h~1.0). It was
then suggested that these ``topological discrete systems'' are a natural choice
for the numerical study of continuum kink dynamics. Giving particular emphasis
to the phi^4 theory, we numerically investigate kink-antikink scattering and
breather formation in these topological lattices. Our results indicate that,
even though these systems are quite accurate for studying free kinks in coarse
lattices, for legitimate dynamical kink problems the accuracy is rather
restricted to fine lattices (h~0.1). We suggest that this fact is related to
the breaking of the Bogomol'nyi bound during the kink-antikink interaction,
where the field profile loses its static property as required by the
Bogomol'nyi argument. We conclude, therefore, that these lattices are not
suitable for the study of more general kink dynamics, since a standard
discretization is simpler and has effectively the same accuracy for such
resolutions.Comment: RevTeX, 4 pages, 4 figures; Revised version, accepted to Physical
Review E (Brief Reports
Come to the dark side! The role of functional traits in shaping dark diversity patterns of south-eastern European hoverflies
1. Dark diversity represents the set of species that can potentially inhabit a given area under particular ecological conditions, but are currently 'missing' from a site. This concept allows characterisation of the mechanisms determining why species are sometimes absent from an area that seems ecologically suitable for them. 2. The aim of this study was to determine the dark diversity of hoverflies in south-eastern Europe and to discuss the role of different functional traits that might increase the likelihood of species contributing to dark diversity. Based on expert opinion, the Syrph the Net database and known occurrences of species, the study estimated species pools, and observed and dark diversities within each of 11 defined vegetation types for 564 hoverfly species registered in south-eastern Europe. To detect the most important functional traits contributing to species being in dark diversity across different vegetation types, a random forest algorithm and respective statistics for variable importance were used. 3. The highest dark diversity was found for southwest Balkan sub-Mediterranean mixed oak forest type, whereas the lowest was in Mediterranean mixed forest type. Three larval feeding modes (saproxylic, and phytophagous on bulbs or roots) were found to be most important for determining the probability of a species contributing to hoverfly dark diversity, based on univariate correlations and random forest analysis. 4. This study shows that studying dark diversity might provide important insights into what drives community assembly in south-eastern European hoverflies, especially its missing components, and contributes to more precise conservation prioritisation of both hoverfly species and their habitats.Peer reviewe
Integrability of Differential-Difference Equations with Discrete Kinks
In this article we discuss a series of models introduced by Barashenkov,
Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4
theory which preserve travelling kink solutions. We show, by applying the
multiple scale test that they have some integrability properties as they pass
the A_1 and A_2 conditions. However they are not integrable as they fail the
A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics:
Theory and Experiment.VI" in a special issue di Theoretical and Mathematical
Physic
Quantum lump dynamics on the two-sphere
It is well known that the low-energy classical dynamics of solitons of
Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli
space of static n-solitons. There is an obvious quantization of this dynamics
wherein the wavefunction evolves according to the Hamiltonian H_0 equal to
(half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical
systems suggests, however, that this simple Hamiltonian should receive
corrections including k, the scalar curvature of M_n, and C, the n-soliton
Casimir energy, which are usually difficult to compute, and whose effect on the
energy spectrum is unknown. This paper analyzes the spectra of H_0 and two
corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and
H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on
the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant
under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry
gives rise to two conserved angular momenta, spin and isospin. A hidden
isometry of M_1 is found which implies that all three energy spectra are
symmetric under spin-isospin interchange. The Casimir energy is found exactly
on the zero section of TSO(3), and approximated numerically on the rest of M_1.
The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin
and parity compared. The curvature corrections in H_1 lead to a qualitatively
unchanged low-level spectrum while the Casimir energy in H_2 leads to
significant changes. The scaling behaviour of the spectra under changes in the
radii of the domain and target spheres is analyzed, and it is found that the
disparity between the spectra of H_1 and H_2 is reduced when the target sphere
is made smaller.Comment: 35 pages, 3 figure
- âŚ