8 research outputs found
The He(e, ed)p Reaction in q-constant Kinematics
The cross section for the He(e, ed)p reaction has been measured as a
function of the missing momentum in q -constant kinematics at
beam energies of 370 and 576 MeV for values of the three-momentum transfer
of 412, 504 and 604 \mevc. The L(+TT), T and LT structure functions have been
separated for = 412 and 504 \mevc. The data are compared to three-body
Faddeev calculations, including meson-exchange currents (MEC), and to
calculations based on a covariant diagrammatic expansion. The influence of
final-state interactions and meson-exchange currents is discussed. The
-dependence of the data is reasonably well described by all calculations.
However, the most advanced Faddeev calculations, which employ the AV18
nucleon-nucleon interaction and include MEC, overestimate the measured cross
sections, especially the longitudinal part, and at the larger values of .
The diagrammatic approach gives a fair description of the cross section, but
under(over)estimates the longitudinal (transverse) structure function.Comment: 17 pages, 7 figure
q and p Dependence of the He(e,e'd)p Reaction
The cross section for the He-3(e, e'd)p reaction has been measured for a range of missing momentum p, at incident electron energies of 370 and 576 MeV and for values of the three-momentum transfer q of 412, 504, and 604 MeV/c. The longitudinal and transverse structure functions have been separated for q = 412 and 504 MeV/c. The data are compared to exact three-body Faddeev calculations and calculations based on a covariant, gauge-invariant diagrammatic expansion. In general, fair to good agreement is observed, but there are some differences between the data and the calculations, especially for the q dependence and for the transverse structure function W-T