24 research outputs found

    Hollow glass fibres in aerospace

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:7620.858(97/02) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Model Reference Adaptive Guidance for Re-entry Trajectory Tracking

    No full text

    Geomorphology and earth system science

    Get PDF
    Earth system science is an approach to obtain a scientific understanding of the entire Earth system on a global scale by describing how its component parts and their interactions have evolved, how they function, and how they may be expected to continue to evolve on all time-scales. The aim of this review is to introduce some key examples showing the role of earth surface processes, the traditional subject of geomorphology, within the interacting Earth system. The paper considers three examples of environmental systems in which geomorphology plays a key role: (i) links between topography, tectonics, and atmospheric circulation; (ii) links between geomorphic processes and biogeochemical cycles; and (iii) links between biological processes and the earth’s surface. Key research needs are discussed, including the requirement for better opportunities for interdisciplinary collaboration, clearer mathematical frameworks for earth system models, and more sophisticated interaction between natural and social scientists

    Supplementary material from "Geometric localization in supported elastic struts"

    No full text
    Localized deformation patterns are a common motif in morphogenesis and are increasingly finding applications in materials science and engineering, in such instances as mechanical memories. Here, we describe the emergence of spatially localized deformations in a minimal mechanical system by exploring the impact of growth and shear on the conformation of a semi-flexible filament connected to a pliable shearable substrate. We combine numerical simulations of a discrete rod model with theoretical analysis of the differential equations recovered in the continuum limit to quantify (in the form of scaling laws) how geometry, mechanics and growth act together to give rise to such localized structures in this system. We find that spatially localized deformations along the filament emerge for intermediate shear modulus and increasing growth. Finally, we use experiments on a 3D-printed multi-material model system to demonstrate that external control of the amount of shear and growth may be used to regulate the spatial extent of the localized strain texture
    corecore