12,015 research outputs found
Association of XRCC1 and XRCC3 gene haplotypes with the development of radiation-induced fibrosis in patients with nasopharyngeal carcinoma
published_or_final_versio
Empirical assessment of cosmic ray propagation in magnetized molecular cloud complexes
Molecular clouds are complex magnetized structures, with variations over a broad range of length scales. Ionization in dense, shielded clumps and cores of molecular clouds is thought to be caused by charged cosmic rays (CRs). These CRs can also contribute to heating the gas deep within molecular clouds, and their effect can be substantial in environments where CRs are abundant. CRs propagate predominantly by diffusion in media with disordered magnetic fields. The complex magnetic structures in molecular clouds therefore determine the propagation and spatial distribution of CRs within them, and hence regulate their local ionization and heating patterns. Optical and near-infrared (NIR) polarization of starlight through molecular clouds is often used to trace magnetic fields. The coefficients of CR diffusion in magnetized molecular cloud complexes can be inferred from the observed fluctuations in these optical/NIR starlight polarisations. Here, we present calculations of the expected CR heating patterns in the star-forming filaments of IC 5146, determined from optical/NIR observations. Our calculations show that local conditions give rise to substantial variation in CR propagation. This affects the local CR heating power. Such effects are expected to be severe in star-forming galaxies rich in CRs. The molecular clouds in these galaxies could evolve differently to those in galaxies where CRs are less abundant
Recommended from our members
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE) classes - polymers, sulfides, or oxides - none alone can deliver the combined properties of ionic conductivity, mechanical, and chemical stability needed to address scalability and commercialization challenges. While promising strategies to overcome these include the use of polymer/oxide or sulfide composites, there is still a lack of fundamental understanding between different SSE-polymer-solvent systems and its selection criteria. Here, we isolate various SSE-polymer-solvent systems and study their molecular level interactions by combining various characterization tools. With these findings, we introduce a suitable Li7P3S11SSE-SEBS polymer-xylene solvent combination that significantly reduces SSE thickness (∼50 μm). The SSE-polymer composite displays high room temperature conductivity (0.7 mS cm-1) and good stability with lithium metal by plating and stripping over 2000 h at 1.1 mAh cm-2. This study suggests the importance of understanding fundamental SSE-polymer-solvent interactions and provides a design strategy for scalable production of ASSBs
Association between genetic polymorphisms and carotid atherosclerosis in patients treated with radiotherapy for nasopharyngeal carcinoma
published_or_final_versio
Predictors of the Extent of Carotid Atherosclerosis in Patients Treated with Radiotherapy for Nasopharyngeal Carcinoma
published_or_final_versio
Recommended from our members
Hankel-norm approximation of FIR filters: a descriptor-systems based approach
We propose a new method for approximating a matrix finite impulse response (FIR) filter by an infinite impulse response (IIR) filter of lower McMillan degree. This is based on a technique for approximating discrete-time descriptor systems and requires only standard linear algebraic routines, while avoiding altogether the solution of two matrix Lyapunov equations which is computationally expensive. Both the optimal and the suboptimal cases are addressed using a unified treatment. A detailed solution is developed in state-space or polynomial form, using only the Markov parameters of the FIR filter which is approximated. The method is finally applied to the design of scalar IIR filters with specified magnitude frequency-response tolerances and approximately linear-phase characteristics. A priori bounds on the magnitude and phase errors are obtained which may be used to select the reduced-order IIR filter order which satisfies the specified design tolerances. The effectiveness of the method is illustrated with a numerical example. Additional applications of the method are also briefly discussed
A Renormalizable Supersymmetric SU(5) Model
In the Supersymmetric SU(5) Model of Unification with the Missing Partner
Mechanism, we present a renormalizable model using the Georgi-Jarlsog mechanism
to describe the fermion masses and mixing. At the meantime the proton decay
rates are also suppressed to satisfy the experimental data
Strained graphene structures: from valleytronics to pressure sensing
Due to its strong bonds graphene can stretch up to 25% of its original size
without breaking. Furthermore, mechanical deformations lead to the generation
of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has
opposite direction for electrons originating from different valleys. We show
that valley-polarized currents can be generated by local straining of
multi-terminal graphene devices. The pseudo-magnetic field created by a
Gaussian-like deformation allows electrons from only one valley to transmit and
a current of electrons from a single valley is generated at the opposite side
of the locally strained region. Furthermore, applying a pressure difference
between the two sides of a graphene membrane causes it to bend/bulge resulting
in a resistance change. We find that the resistance changes linearly with
pressure for bubbles of small radius while the response becomes non-linear for
bubbles that stretch almost to the edges of the sample. This is explained as
due to the strong interference of propagating electronic modes inside the
bubble. Our calculations show that high gauge factors can be obtained in this
way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho
Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets
Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets. © 2015 Zheng et al.published_or_final_versio
- …