47 research outputs found
A seesaw model for intermolecular gating in the kinesin motor protein
Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or âheadsâ, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Ă
resolution, 3D reconstructions of kinesin-1âąmicrotubule complexes for all three of this motorâs principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesinâs ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesinâs ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesinâmicrotubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement
Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study
Metastasis is the leading cause of cancer-related deaths. Voltage-gated sodium channels (VGSCs) regulate invasion and metastasis. Several VGSC-inhibiting drugs reduce metastasis in murine cancer models. We aimed to test the hypothesis that patients taking VGSC-inhibiting drugs who developed cancer live longer than those not taking these drugs. A cohort study was performed on primary care data from the QResearch database, including patients with breast, bowel or prostate cancer. Cox proportional hazards regression was used to compare the survival from cancer diagnosis of patients taking VGSC-inhibiting drugs with those not exposed to these drugs. Median time to death was 9.7 years in the exposed group and 18.4 years in the unexposed group, and exposure to these medications significantly increased mortality. Thus, exposure to VGSC-inhibiting drugs associates with reduced survival in breast, bowel and prostate cancer patients. This finding is not consistent with the preclinical data. Despite the strengths of this study including the large sample size, the study is limited by missing information on potentially important confounders such as cancer stage, co-morbidities and cause of death. Further research, which is able to account for these confounding issues, is needed to investigate the relationship between VGSC-inhibiting drugs and cancer survival
Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)
Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions