9 research outputs found

    Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance

    No full text
    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC > THF-URE > THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties. © 2013 American Association of Pharmaceutical Scientists

    Role of genetic and non-genetic factors in the etiology of Graves' disease

    No full text
    n spite of the advancements in understanding the pathogenic mechanisms of Graves' disease (GD), its ultimate cause remains elusive. The majority of investigators agree that GD is likely a multifactorial disease, due to a complex interplay of genetic and non-genetic factors that lead to the loss of immune tolerance to thyroid antigens and to the initiation of a sustained autoimmune reaction. Twin and family studies support a role of genetic factors, among which the HLA complex, CD40, CTLA-4, PTPN22, FCRL3, thyroglobulin, and the TSH receptor may be involved. Among non-genetic factors, iodine, infections, psychological stress, gender, smoking, thyroid damage, vitamin D, selenium, immune modulating agents, and periods of immune reconstitution may contribute the development of the diseases. Here we review in detail the respective role of genetic and non-genetic factors in the etiology of GD, taking advantage of the great bulk of data generated especially over the past 30 years

    Autoimmune diseases - connecting risk alleles with molecular traits of the immune system

    No full text
    Genome-wide strategies have driven the discovery of more than 300 susceptibility loci for autoimmune diseases. However, for almost all loci, understanding of the mechanisms leading to autoimmunity remains limited, and most variants that are likely to be causal are in non-coding regions of the genome. A critical next step will be to identify the in vivo and ex vivo immunophenotypes that are affected by risk variants. To do this, key cell types and cell states that are implicated in autoimmune diseases will need to be defined. Functional genomic annotations from these cell types and states can then be used to resolve candidate genes and causal variants. Together with longitudinal studies, this approach may yield pivotal insights into how autoimmunity is triggered

    Regional specialization within the intestinal immune system.

    No full text
    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine

    Autoimmune diseases — connecting risk alleles with molecular traits of the immune system

    No full text

    Regional specialization within the intestinal immune system

    No full text
    corecore