22 research outputs found

    Modifying patterns of movement in people with low back pain -does it help? A systematic review

    Get PDF
    Background: Physiotherapy for people with low back pain frequently includes assessment and modification of lumbo-pelvic movement. Interventions commonly aim to restore normal movement and thereby reduce pain and improve activity limitation. The objective of this systematic review was to investigate: (i) the effect of movement-based interventions on movement patterns (muscle activation, lumbo-pelvic kinematics or postural patterns) of people with low back pain (LBP), and (ii) the relationship between changes in movement patterns and subsequent changes in pain and activity limitation. Methods. MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2012. Randomised controlled trials or controlled clinical trials of people with LBP were eligible for inclusion. The intervention must have been designed to influence (i) muscle activity patterns, (ii) lumbo-pelvic kinematic patterns or (iii) postural patterns, and included measurement of such deficits before and after treatment, to allow determination of the success of the intervention on the lumbo-pelvic movement. Twelve trials (25% of retrieved studies) met the inclusion criteria. Two reviewers independently identified, assessed and extracted data. The PEDro scale was used to assess method quality. Intervention effects were described using standardised differences between group means and 95% confidence intervals. Results: The included trials showed inconsistent, mostly small to moderate intervention effects on targeted movement patterns. There was considerable heterogeneity in trial design, intervention type and outcome measures. A relationship between changes to movement patterns and improvements in pain or activity limitation was observed in one of six studies on muscle activation patterns, one of four studies that examined the flexion relaxation response pattern and in two of three studies that assessed lumbo-pelvic kinematics or postural characteristics. Conclusions: Movement-based interventions were infrequently effec tive for changing observable movement patterns. A relationship between changes in movement patterns and improvement in pain or activity limitation was also infrequently observed. No independent studies confirm any observed relationships. Challenges for future research include defining best methods for measuring (i) movement aberrations, (ii) improvements in movements, and (iii) the relationship between changes in how people move and associated changes in other health indicators such as activity limitation

    Effect of spinal manipulation on sensorimotor functions in back pain patients: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is a recognized public health problem, impacting up to 80% of US adults at some point in their lives. Patients with LBP are utilizing integrative health care such as spinal manipulation (SM). SM is the therapeutic application of a load to specific body tissues or structures and can be divided into two broad categories: SM with a high-velocity low-amplitude load, or an impulse "thrust", (HVLA-SM) and SM with a low-velocity variable-amplitude load (LVVA-SM). There is evidence that sensorimotor function in people with LBP is altered. This study evaluates the sensorimotor function in the lumbopelvic region, as measured by postural sway, response to sudden load and repositioning accuracy, following SM to the lumbar and pelvic region when compared to a sham treatment.</p> <p>Methods/Design</p> <p>A total of 219 participants with acute, subacute or chronic low back pain are being recruited from the Quad Cities area located in Iowa and Illinois. They are allocated through a minimization algorithm in a 1:1:1 ratio to receive either 13 HVLA-SM treatments over 6 weeks, 13 LVVA-SM treatments over 6 weeks or 2 weeks of a sham treatment followed by 4 weeks of full spine "doctor's choice" SM. Sensorimotor function tests are performed before and immediately after treatment at baseline, week 2 and week 6. Self-report outcome assessments are also collected. The primary aims of this study are to 1) determine immediate pre to post changes in sensorimotor function as measured by postural sway following delivery of a single HVLA-SM or LVVA-SM treatment when compared to a sham treatment and 2) to determine changes from baseline to 2 weeks (4 treatments) of HVLA-SM or LVVA-SM compared to a sham treatment. Secondary aims include changes in response to sudden loads and lumbar repositioning accuracy at these endpoints, estimating sensorimotor function in the SM groups after 6 weeks of treatment, and exploring if changes in sensorimotor function are associated with changes in self-report outcome assessments.</p> <p>Discussion</p> <p>This study may provide clues to the sensorimotor mechanisms that explain observed functional deficits associated with LBP, as well as the mechanism of action of SM.</p> <p>Trial registration</p> <p>This trial is registered in ClinicalTrials.gov, with the ID number of <a href="http://www.clinicaltrials.gov/ct2/show/NCT00830596">NCT00830596</a>, registered on January 27, 2009. The first participant was allocated on 30 January 2009 and the final participant was allocated on 17 March 2011.</p

    Functional and Morphological Changes in the Deep Lumbar Multifidus Using Electromyography and Ultrasound

    No full text
    Abstract Surface electromyography (sEMG) studies have indicated that chronic low back pain (cLBP) involves altered electromyographic activity and morphological structure of the lumbar multifidus (LM) beyond pain perception; however, most studies have evaluated the superficial lumbar multifidus. It is difficult to record electromyography (EMG) signals from the deep multifidus (DM) to determine the neuromuscular activation patterns, making it difficult to determine the relationship between functional and structural changes in cLBP. We developed a novel method to record intramuscular EMG signals in the DM based on the sEMG system and fine-wire electrodes. We measured EMG signals of the DM in 24 cLBP patients and 26 pain-free healthy controls to identify changes in neuromuscular activation. We also used ultrasound to measure DM muscle thickness, cross-sectional area, and contraction activity to identify potential relationships between EMG activity and structural damage. cLBP patients had decreased average EMG and root mean square, but increased median frequency and mean power frequency. Average EMG was positively correlated with contractile activity, but not statistically correlated with noncontractile anatomical abnormalities. Our results suggest that cLBP alters the neuromuscular activation patterns and morphological structure of the contractile activity of the DM, providing insights into the mechanisms underlying pain perception
    corecore