68 research outputs found
Bisphosphonates as antimyeloma drugs
In patients with symptomatic multiple myeloma (MM), bisphosphonate (BP) treatment has been widely used to prevent bone loss and preserve skeletal health because of its proven effects on inhibiting osteoclast-mediated bone resorption. In addition to their effects on osteoclasts, it is becoming increasingly evident that BPs may have additional effects on the bone microenvironment and cells other than osteoclasts that may potentially inhibit the development and progression of MM. This review focuses on the pathophysiology of MM with an emphasis on the events that drive MM progression within the bone and the mechanisms by which BPs may inhibit specific processes. The underlying molecular mechanisms that drive the modulation of cellular fate and function and consequent physiological outcomes are described. Direct effects on myeloma cell growth and survival and the interactions between myeloma cells and the bone microenvironment are discussed. Clinical evidence of the antimyeloma effects of BPs is emerging and is also reviewed
The role of bisphosphonates in breast cancer: Development of bisphosphonates
Bisphosphonates are synthetic compounds characterized by a PβCβP group, and are thus analogs of inorganic pyrophosphate. They are used in medicine mainly to inhibit bone resorption in diseases like osteoporosis, Paget's disease and tumor bone disease. They have been used for over a century in industry, and only in 1968 was it shown that bisphosphonates have biological effects. These effects consist mainly of an inhibition of bone resorption and, when given in large amounts, an inhibition of ectopic and normal calcification. While the latter effect is the consequence of a physical-chemical inhibition of calcium phosphate crystal formation, the former is due to a cellular effect involving both apoptosis of the osteoclasts and a destruction of the osteoclastic cytoskeleton, inducing a decrease in osteoclast activity. The biochemical basis of these effects for the nitrogen-containing compounds is an inhibition of the mevalonate pathway caused by the inhibition of farnesylpyrophosphate synthase, which leads to a decrease of the formation of isoprenoid lipids such as farnesylpyrophosphate and geranylgeranylpyrophosphate. The other bisphosphonates are incorporated into the phosphate chain of ATP-containing compounds so that they become non-hydrolyzable. The new PβCβP-containing ATP analogs inhibit cell function and may lead to apoptosis and death of osteoclasts
Anti-tumor effect of bisphosphonate (YM529) on non-small cell lung cancer cell lines
BACKGROUND: YM529 is a newly developed nitrogen-containing bisphosphonate (BP) classified as a third-generation BP that shows a 100-fold greater potency against bone resorption than pamidronate, a second-generation BP. This agent is, therefore expected to be extremely useful clinically for the treatment of osteoporosis and hypercalcemia. Recently, YM529 as well as other third-generation BPs have also been shown to exert anti-tumor effects against various types of cancer cells both in vitro or/and in vivo. In this study, we investigate the anti-tumor effect of YM529 on non-small cell lung cancer (NSCLC). METHODS: Direct anti-tumor effect of YM529 against 8 NSCLC cell lines (adenocarcinoma: H23, H1299, NCI-H1819, NCI-H2009, H44, A549, adenosquamous cell carcinoma: NCI-H125, squamous cell carcinoma: NCI-H157) were measured by MTS assay and calculated inhibition concentration 50 % (IC(50)) values. YM529 induced apoptosis of NCI-H1819 was examined by DNA fragmentation of 2 % agarose gel electrophoresis and flowcytometric analysis (sub-G(1 )method). We examined where YM529 given effect to apoptosis of NSCLC cells in signaling pathway of the mevalonate pathway by western blotting analysis. RESULTS: We found that there was direct anti-tumor effect of YM529 on 8 NSCLC cell lines in a dose-dependent manner and their IC(50 )values were 2.1 to 7.9 ΞΌM and YM529 induced apoptosis and G(1 )arrest cell cycle with dose-dependent manner and YM529 caused down regulation of phospholyration of ERK1/2 in signaling pathways of NSCLC cell line (NCI-H1819). CONCLUSION: Our study demonstrate that YM529 showed direct anti-tumor effect on NSCLC cell lines in vitro, which supports the possibility that third-generation BPs including YM529 can be one of therapeutic options for NSCLC
The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro
Pamidronate belongs to the class of nitrogen-containing bisphosphonates that are potent inhibitors of bone resorption frequently used for the treatment of osteoporosis and cancer-induced osteolysis. The inhibition of osteoclastsβ growth has been suggested as the main mechanism of the inhibitory effect of pamidronate on bone metastases. Recent findings indicated that bisphosphonates also have a direct apoptotic effect on other types of tumour cells. Nitrogen-containing bisphosphonates were shown to inhibit farnesyl diphosphate synthase, thus blocking the synthesis of higher isoprenoids. By this mechanism they inactivate monomeric G-proteins of the Ras and Rho families for which prenylation is a functional requirement. On the background of the known key role of G-proteins in tumorigenesis, we investigated a possible beneficial use of pamidronate in the treatment of malignant melanoma. Our results indicate that pamidronate inhibits the cell growth and induces apoptosis in human melanoma cells in vitro. Susceptibility to pamidronate did not correlate to CD95 ligand sensitivity or p53 mutational status. Furthermore it is interesting to note that overexpression of bcl-2 did not abolish pamidronate-induced apoptosis. These data suggests that pamidronate has a direct anti-tumour effect on malignant melanoma cells, independently of the Bax/Bcl-2 level
Bisphosphonates induce apoptosis in human breast cancer cell lines
Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 ΞΌM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 ΞΌM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. Β© 2000 Cancer Research Campaig
The bisphosphonate zoledronic acid impairs membrane localisation and induces cytochrome c release in breast cancer cells
Bisphosphonates are well established in the management of cancer-induced bone disease. Recent studies have indicated that these compounds have direct inhibitory effects on cultured human breast cancer cells. Nitrogen-containing bisphosphonates including zoledronic acid have been shown to induce apoptosis associated with PARP cleavage and DNA fragmentation. The aim of this study was to identify the signalling pathways involved. Forced expression of the anti-apoptotic protein bcl-2 attenuated bisphosphonate-induced loss of cell viability and induction of DNA fragmentation in MDA-MB-231 cells. Zoledronic acid-mediated apoptosis was associated with a time and dose-related release of mitochondrial cytochrome c into the cytosol in two cell lines. Rescue of cells by preincubation with a caspase-3 selective inhibitor and demonstration of pro-caspase-3 cleavage products by immunoblotting suggests that at least one of the caspases activated in response to zoledronic acid treatment is caspase-3. In both MDA-MB-231 and MCF-7 breast cancer cells, zoledronic acid impaired membrane localisation of Ras indicating reduced prenylation of this protein. These observations demonstrate that zoledronic acid-mediated apoptosis is associated with cytochrome c release and consequent caspase activation. This process may be initiated by inhibition of the enzymes in the mevalonate pathway leading to impaired prenylation of key intracellular proteins including Ras
Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment
BACKGROUND: After development of hormone-refractory metastatic disease, prostate cancer is incurable. The recent history of chemotherapy has shown that with difficult disease targets, combinatorial therapy frequently offers the best chance of a cure. In this study we have examined the effects of a combination of zoledronic acid (ZOL), a new-generation bisphosphonate, and docetaxel on LuCaP 23.1, a prostate cancer xenograft that stimulates the osteoblastic reaction when grown in the bone environment. METHODS: Intra-tibial injections of LuCaP 23.1 cells were used to generate tumors in the bone environment, and animals were treated with ZOL, docetaxel, or a combination of these. Effects on bone and tumor were evaluated by measurements of bone mineral density and histomorphometrical analysis. RESULTS: ZOL decreased proliferation of LuCaP 23.1 in the bone environment, while docetaxel at a dose that effectively inhibited growth of subcutaneous tumors did not show any effects in the bone environment. The combination of the drugs significantly inhibited the growth of LuCaP 23.1 tumors in the bone. CONCLUSION: In conclusion, the use of the osteolysis-inhibitory agent ZOL in combination with docetaxel inhibits growth of prostate tumors in bone and represents a potential treatment option
- β¦