16 research outputs found

    Selecting Forecasting Methods

    Get PDF
    I examined six ways of selecting forecasting methods: Convenience, “what’s easy,” is inexpensive, but risky. Market popularity, “what others do,” sounds appealing but is unlikely to be of value because popularity and success may not be related and because it overlooks some methods. Structured judgment, “what experts advise,” which is to rate methods against prespecified criteria, is promising. Statistical criteria, “what should work,” are widely used and valuable, but risky if applied narrowly. Relative track records, “what has worked in this situation,” are expensive because they depend on conducting evaluation studies. Guidelines from prior research, “what works in this type of situation,” relies on published research and offers a low-cost, effective approach to selection. Using a systematic review of prior research, I developed a flow chart to guide forecasters in selecting among ten forecasting methods. Some key findings: Given enough data, quantitative methods are more accurate than judgmental methods. When large changes are expected, causal methods are more accurate than naive methods. Simple methods are preferable to complex methods; they are easier to understand, less expensive, and seldom less accurate. To select a judgmental method, determine whether there are large changes, frequent forecasts, conflicts among decision makers, and policy considerations. To select a quantitative method, consider the level of knowledge about relationships, the amount of change involved, the type of data, the need for policy analysis, and the extent of domain knowledge. When selection is difficult, combine forecasts from different methods

    Extrapolation for Time-Series and Cross-Sectional Data

    Get PDF
    Extrapolation methods are reliable, objective, inexpensive, quick, and easily automated. As a result, they are widely used, especially for inventory and production forecasts, for operational planning for up to two years ahead, and for long-term forecasts in some situations, such as population forecasting. This paper provides principles for selecting and preparing data, making seasonal adjustments, extrapolating, assessing uncertainty, and identifying when to use extrapolation. The principles are based on received wisdom (i.e., experts’ commonly held opinions) and on empirical studies. Some of the more important principles are:• In selecting and preparing data, use all relevant data and adjust the data for important events that occurred in the past.• Make seasonal adjustments only when seasonal effects are expected and only if there is good evidence by which to measure them.• In extrapolating, use simple functional forms. Weight the most recent data heavily if there are small measurement errors, stable series, and short forecast horizons. Domain knowledge and forecasting expertise can help to select effective extrapolation procedures. When there is uncertainty, be conservative in forecasting trends. Update extrapolation models as new data are received.• To assess uncertainty, make empirical estimates to establish prediction intervals.• Use pure extrapolation when many forecasts are required, little is known about the situation, the situation is stable, and expert forecasts might be biased

    Trends and Future of Satellite Communications

    No full text

    Technology Forecasting Methods

    No full text
    corecore