40 research outputs found

    “Nonsense Rides Piggyback on Sensible Things”: The Past, Present, and Future of Graphology

    Get PDF
    “Nonsense rides piggyback on sensible things”, declares professional sceptic and questioned-document analyst Joe Nickell concerning graphology. This chapter examines graphology’s enduring allure and reach, despite its controversies, and considers its relationship with other types of handwriting analysis. It first asks: is it possible to metaphorically “dissect” the page of handwritten texts, to scrutinize writing as a “medical paratext” rich in information about the writer’s state of health? It then interrogates the nature of the connection between physical and mental states and handwriting. It demonstrates how academics are going “back to basics” with their enquiries into individual difference and handwriting features, and how digital methodologies are contributing to this. Thus, this chapter is an updated study of graphology, providing a wider understanding of the concept of the paratext by considering the information captured in handwriting in the context of a digital age

    The Liver Plays a Major Role in Clearance and Destruction of Blood Trypomastigotes in Trypanosoma cruzi Chronically Infected Mice

    Get PDF
    Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5×106 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1+, CD8+ and CD4+ cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4+ and CD8+ cells were activated, increased frequencies of CD69+CD8+, CD69+CD4+ and CD25+CD122+CD4+ cells were observed at 24 and 48 h after challenge, and of CD25−CD122+CD4+ cells at 48 h. The major role of CD4+ cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-γ-producing CD4+ cells 24 h after challenge. In contrast, liver CD8+ cells produced little IFN-γ, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge

    Risk Factors for and Clinical Outcome of Congenital Cytomegalovirus Infection in a Peri-Urban West-African Birth Cohort

    Get PDF
    BACKGROUND: Congenital cytomegalovirus (CMV) infection is the most prevalent congenital infection worldwide. Epidemiology and clinical outcomes are known to vary with socio-economic background, but few data are available from developing countries, where the overall burden of infectious diseases is frequently high. METHODOLOGY/PRINCIPAL FINDINGS: As part of an ongoing birth cohort study in The Gambia among term infants, urine samples were collected at birth and tested by PCR for the presence of CMV DNA. Risk factors for transmission and clinical outcome were assessed, including placental malaria infection. Babies were followed up at home monthly for morbidity and anthropometry, and at one year of age a clinical evaluation was performed. The prevalence of congenital CMV infection was 5.4% (40/741). A higher prevalence of hepatomegaly was the only significant clinical difference at birth. Congenitally infected children were more often first born babies (adjusted odds ratio (OR) 5.3, 95% confidence interval (CI) 2.0-13.7), more frequently born in crowded compounds (adjusted OR 2.9, 95%CI 1.0-8.3) and active placental malaria was more prevalent (adjusted OR 2.9, 95%CI 1.0-8.4). These associations were corrected for maternal age, bed net use and season of birth. During the first year of follow up, mothers of congenitally infected children reported more health complaints for their child. CONCLUSIONS/SIGNIFICANCE: In this study, the prevalence of congenital CMV among healthy neonates was much higher than previously reported in industrialised countries, and was associated with active placental malaria infection. There were no obvious clinical implications during the first year of life. The effect of early life CMV on the developing infant in the Gambia could be mitigated by environmental factors, such as the high burden of other infections.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Determinants of director compensation in two-tier systems: evidence from German panel data

    Full text link

    Primary processes in sensory cells: current advances

    Get PDF

    Immunosuppressive drugs as a tool to explore immunopathology in experimental Chagas disease

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2020-06-07T12:55:55Z No. of bitstreams: 1 KatiaS_Calabrese_IOC_1999.pdf: 38451 bytes, checksum: 8ff072aabd0a77c14ab182f9a4301727 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2020-06-07T13:07:38Z (GMT) No. of bitstreams: 1 KatiaS_Calabrese_IOC_1999.pdf: 38451 bytes, checksum: 8ff072aabd0a77c14ab182f9a4301727 (MD5)Made available in DSpace on 2020-06-07T13:07:38Z (GMT). No. of bitstreams: 1 KatiaS_Calabrese_IOC_1999.pdf: 38451 bytes, checksum: 8ff072aabd0a77c14ab182f9a4301727 (MD5) Previous issue date: 1999Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Protozoologia. LaboratĂłrio de Immunomodulação. Rio de Janeiro, RJ, Brasil
    corecore