8 research outputs found

    Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-identification

    Get PDF
    © 2020, Springer Nature Switzerland AG. Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings

    pubmed2ensembl: A Resource for Mining the Biological Literature on Genes

    Get PDF
    The last two decades have witnessed a dramatic acceleration in the production of genomic sequence information and publication of biomedical articles. Despite the fact that genome sequence data and publications are two of the most heavily relied-upon sources of information for many biologists, very little effort has been made to systematically integrate data from genomic sequences directly with the biological literature. For a limited number of model organisms dedicated teams manually curate publications about genes; however for species with no such dedicated staff many thousands of articles are never mapped to genes or genomic regions.To overcome the lack of integration between genomic data and biological literature, we have developed pubmed2ensembl (http://www.pubmed2ensembl.org), an extension to the BioMart system that links over 2,000,000 articles in PubMed to nearly 150,000 genes in Ensembl from 50 species. We use several sources of curated (e.g., Entrez Gene) and automatically generated (e.g., gene names extracted through text-mining on MEDLINE records) sources of gene-publication links, allowing users to filter and combine different data sources to suit their individual needs for information extraction and biological discovery. In addition to extending the Ensembl BioMart database to include published information on genes, we also implemented a scripting language for automated BioMart construction and a novel BioMart interface that allows text-based queries to be performed against PubMed and PubMed Central documents in conjunction with constraints on genomic features. Finally, we illustrate the potential of pubmed2ensembl through typical use cases that involve integrated queries across the biomedical literature and genomic data.By allowing biologists to find the relevant literature on specific genomic regions or sets of functionally related genes more easily, pubmed2ensembl offers a much-needed genome informatics inspired solution to accessing the ever-increasing biomedical literature

    Coarse to Fine Training for Low-Resolution Heterogeneous Face Recognition

    No full text
    Recently, near-infrared (NIR) images are being increasingly used for recognizing facial images across illumination variations and in low-light conditions. In surveillance scenarios, the captured NIR may have low-resolution which results in significant loss of discriminative information along with uncontrolled pose. In this work, we address the challenging task of matching these low-resolution (LR) uncontrolled NIR images with high-resolution (HR) controlled visible (VIS) images usually present in the database. Since the probe and gallery images differ significantly in terms of pose, resolution and spectral properties, we employ a two-stage approach. First, the images are transformed into a common space using metric learning such that the images of the same subject are pushed closer and those of different subjects are pushed apart. We then define an objective function which can simultaneously push both LR NIR and HR VIS samples towards the centroids of the HR VIS samples. We show that the approach is general and can be used for other data like RGB-D and also for matching across pose. Extensive experiments conducted on five datasets shows the effectiveness of our approach. © 2018 IEEE
    corecore