563 research outputs found

    Is the Fate of Clinical Candidate Arry-520 Already Sealed? Predicting Resistance in Eg5–Inhibitor Complexes

    Get PDF
    Arry-520 is an advanced drug candidate from the Eg5 inhibitor class undergoing clinical evaluation in patients with relapsed or refractory multiple myeloma. Here we show by structural analysis that Arry-520 binds stoichiometrically to the motor domain of Eg5 in the conventional allosteric loop L5 pocket in a complex that suggests the same structural mechanism as other Eg5 inhibitors. We have previously shown that acquired resistance through mutations in the allosteric binding site located at loop L5 in the Eg5 structure appears to be independent of the inhibitors' scaffold, which suggests that Arry-520 will ultimately have the same fate. When Arry-520 was assessed in two cell lines selected for the expression of either Eg5(D130A) or Eg5(L214A) STLC-resistant alleles, mutations previously shown to convey resistance to this class of inhibitors, it was inactive in both. Surprisingly, when the cells were challenged with ispinesib, another Eg5 inhibitor, the Eg5(D130A) cells were resistant, but those expressing Eg5(L214A) were strikingly sensitive. Molecular dynamics simulations suggest that subtle differences in ligand binding and flexibility in both compound and protein may alter allosteric transmission from the loop L5 site that do not necessarily result in reduced inhibitory activity in mutated Eg5 structures. Whilst we predict that cells challenged with Arry-520 in the clinical setting are likely to acquire resistance through point mutations in the Eg5 binding site, the data for ispinesib suggests that this resistance mechanism is not scaffold independent as previously thought, and new inhibitors can be designed that retain inhibitory activity in these resistant cells

    Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH

    Get PDF
    Background Tuberculosis (TB) is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. Methodology/Principal Findings Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM) to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H37Rv and, dissociatively, against the β-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H37Rv with an MIC of 0.06 µg/ml (240 nM), but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido)-5-(3-chlorophenyl)t​hiazole-4-carboxylateinhibited mtFabH with an IC50 of 0.95±0.05 µg/ml (2.43±0.13 µM) but was not active against the whole cell organism. Conclusions/Significance These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents

    Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in biliary brush cytology

    Get PDF
    Background: Biliary brush cytology is the standard method of evaluating biliary strictures, but is insensitive at detecting malignancy. In pancreaticobiliary cancer minichromosome maintenance replication proteins (MCM 2–7) are dysregulated in the biliary epithelium and MCM5 levels are elevated in bile samples. This study aimed to validate an immunocolorimetric ELISA assay for MCM5 as a pancreaticobiliary cancer biomarker in biliary brush samples. methods: Biliary brush specimens were collected prospectively at ERCP from patients with a biliary stricture. Collected samples were frozen at −80 °C. The supernatant was washed and lysed cells incubated with HRP-labelled anti-MCM5 mouse monoclonal antibody. Test positivity was determined by optical density absorbance. Patients underwent biliary brush cytology or additional investigations as per clinical routine. results: Ninety-seven patients were included in the study; 50 had malignant strictures. Median age was 65 years (range 21–94) and 51 were male. Compared with final diagnosis the MCM5 assay had a sensitivity for malignancy of 65.4% compared with 25.0% for cytology. In the 72 patients with paired MCM5 assay and biliary brush cytology, MCM5 demonstrated an improved sensitivity (55.6% vs 25.0%; P=0.0002) for the detection of malignancy. conclusions: Minichromosome maintenance replication protein5 is a more sensitive indicator of pancreaticobiliary malignancy than standard biliary brush cytology

    Equine Protozoal Myeloencephalitis: An Updated Consensus Statement with a Focus on Parasite Biology, Diagnosis, Treatment, and Prevention

    Get PDF
    Equine protozoal myeloencephalitis (EPM) remains an important neurologic disease of horses. There are no pathognomonic clinical signs for the disease. Affected horses can have focal or multifocal central nervous system (CNS) disease. EPM can be difficult to diagnose antemortem. It is caused by either of 2 parasites, Sarcocystis neurona and Neospora hughesi, with much less known about N. hughesi. Although risk factors such as transport stress and breed and age correlations have been identified, biologic factors such as genetic predispositions of individual animals, and parasite-specific factors such as strain differences in virulence, remain largely undetermined. This consensus statement update presents current published knowledge of the parasite biology, host immune response, disease pathogenesis, epidemiology, and risk factors. Importantly, the statement provides recommendations for EPM diagnosis, treatment, and prevention

    Quantum gravitational contributions to quantum electrodynamics

    Full text link
    Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. But that claim has been very controversial with the situation inconclusive. Here I report an analysis (free from earlier controversies) demonstrating that that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the reduction of the electric charge at high energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure

    Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion

    Get PDF
    Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems

    Automatic Network Fingerprinting through Single-Node Motifs

    Get PDF
    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome
    corecore