177 research outputs found

    Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance

    Get PDF
    BACKGROUND: Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment. METHODS: Immunohistochemistry was performed for SRC3, oestrogen receptor-Ξ±, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane. RESULTS: Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen. CONCLUSION: Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy

    Methylation status of oestrogen receptor-Ξ± gene promoter sequences in human ovarian epithelial cell lines

    Get PDF
    We have determined the methylation status of the CpG island of the oestrogen receptor Ξ± gene in seven human ovarian cell lines. Cell lines expressing oestrogen receptor Ξ± showed no evidence of hypermethylation. In three of four cell lines that produced no detectable oestrogen receptor Ξ± protein, hypermethylation was observed at the NotI site of the CpG island. These results indicate that aberrant hypermethylation may be responsible for a significant proportion of epithelial ovarian tumours in which oestrogen receptor Ξ± expression is lost

    Targeting the EGFR in ovarian cancer with the tyrosine kinase inhibitor ZD1839 (β€œIressa”).

    Get PDF
    The modulating effects of the orally active epidermal growth factor receptor-specific tyrosine kinase inhibitor ZD 1839 (β€˜Iressa’) on cell growth and signalling were evaluated in four ovarian cancer cell lines (PE01, PE04, SKOV-3, OVCAR-5) that express the epidermal growth factor receptor, and in A2780, which is epidermal growth factor receptor-negative. Transforming growth factor-Ξ± stimulated growth was completely inhibited by concentrations of ZD 1839 β©Ύ0.3 μM in the epidermal growth factor receptor-expressing cell lines, as were transforming growth factor-Ξ± stimulated phosphorylation of the epidermal growth factor receptor and downstream components of the MAP kinase and PI-3 kinase signalling cascades. Growth inhibition in the absence of added transforming growth factor-Ξ± was also observed which could be consistent with suppression of action of autocrine epidermal growth factor receptor-activating ligands by ZD 1839. In support of this, transforming growth factor-Ξ±, EGF and amphiregulin mRNAs were detected by RT–PCR in the epidermal growth factor receptor-expressing cell lines. ZD 1839 inhibited growth of the PE04 ovarian cancer xenograft at 200 mg kg(βˆ’1) day(βˆ’1). These data lend further support to the view that targeting the epidermal growth factor receptor in ovarian cancer could have therapeutic benefit. British Journal of Cancer (2002) 86, 456–462. DOI: 10.1038/sj/bjc/6600058 www.bjcancer.com Β© 2002 The Cancer Research Campaig

    Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines

    Get PDF
    The extracellular matrix glycoprotein tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al (1996) Br J Cancer 74: 999-1004). To define regulation of TN further and investigate its function in ovarian cancer, a range of cell line models were studied. Concentrations of secreted TN in media from cultures of ovarian fibroblast cell lines were at least 100-fold greater than from carcinoma cell lines. Evidence for paracrine regulation of TN secretion was obtained by co-culture of carcinoma cells with fibroblast cells wherein secretion into the media was greater than from fibroblasts alone. Transforming growth factor (TGF)- beta 1, insulin-like growth factor (IGF)-II and progesterone all stimulated TN secretion while human choriogonadotropin (hCG), follicle-stimulating hormone (FSH) and gamma-interferon inhibited secretion. TGF-beta 1 produced the greatest stimulation of TN in cultured fibroblasts and its cc-expression with TN was examined in primary ovarian tumours, There was a significant association between the presence of moderate-strong expression of TN and TGF-beta 1. Evidence for TN having a functional role in ovarian carcinoma was obtained from adhesion and migration assays. The PE01, PE04, SKOV-3 and 59M cell lines all demonstrated marked adhesion to plastic coated with TN relative to the control protein bovine serum albumin (BSA) and expressed alpha 2 beta 1 and alpha 3 beta 1 integrins, The SKOV-3 cell line migrated more rapidly through TN than through BSA indicating that TN can facilitate migration of ovarian carcinoma cells

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer

    Get PDF
    c-Raf is an essential component of the extracellular related kinase (ERK) signal transduction pathway. Immunohistochemical staining indicated that c-Raf was present in 49/53 ovarian adenocarcinomas investigated and high c-Raf expression correlated significantly with poor survival (P = 0.002). c-Raf protein was detected in 15 ovarian cancer cell lines. Antisense oligodeoxynucleotides (ODNs) (ISIS 5132 and ISIS 13650) reduced c-Raf protein levels and inhibited cell proliferation in vitro. Selectivity was demonstrated by the lack of effect of ISIS 5132 on A-Raf or ERK, while a random ODN produced only minor effects on growth and did not influence c-Raf expression. ISIS 5132 produced enhanced apoptosis and cells accumulated in S and G 2/M phases of the cell cycle. In vivo, ISIS 5132 inhibited growth of the s.c. SKOV-3 xenograft while a mismatch ODN had no effect. These data indicate that high levels of c-Raf expression may be important in ovarian cancer and use of antisense ODNs targeted to c-Raf could provide a strategy for the treatment of this disease. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    Inhibition of transforming growth factor Ξ± (TGF-Ξ±)-mediated growth effects in ovarian cancer cell lines by a tyrosine kinase inhibitor ZM 252868

    Get PDF
    The modulating effects of the epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor ZM 252868 on cell growth and signalling have been evaluated in four ovarian carcinoma cell lines PE01, PE04, SKOV-3 and PE01CDDP. Transforming growth factor Ξ± (TGF-Ξ±)-stimulated growth was completely inhibited by concentrations β‰₯ 0.3 ΞΌM in the PE01 and PE04 cell lines and by β‰₯ 0.1 ΞΌM in SKOV-3 cells. TGF-Ξ± inhibition of PE01CDDP growth was reversed by concentrations β‰₯ 0.1 ΞΌM ZM 252868. TGF-Ξ±-stimulated tyrosine phosphorylation of both the EGF receptor and c-erbB2 receptor in all four cell lines. The inhibitor ZM 252868, at concentrations β‰₯ 0.3 ΞΌM, completely inhibited TGF-Ξ±-stimulated tyrosine phosphorylation of the EGF receptor and reduced phosphorylation of the c-erbB2 protein. EGF-activated EGF receptor tyrosine kinase activity was completely inhibited by 3 ΞΌM ZM 252868 in PE01, SKOV-3 and PE01CDDP cells. These data indicate that the EGF receptor-targeted TK inhibitor ZM 252868 can inhibit growth of ovarian carcinoma cells in vitro consistent with inhibition of tyrosine phosphorylation at the EGF receptor. Β© 1999 Cancer Research Campaig
    • …
    corecore