12 research outputs found
Electronic correlations in the iron pnictides
In correlated metals derived from Mott insulators, the motion of an electron
is impeded by Coulomb repulsion due to other electrons. This phenomenon causes
a substantial reduction in the electron's kinetic energy leading to remarkable
experimental manifestations in optical spectroscopy. The high-Tc
superconducting cuprates are perhaps the most studied examples of such
correlated metals. The occurrence of high-Tc superconductivity in the iron
pnictides puts a spotlight on the relevance of correlation effects in these
materials. Here we present an infrared and optical study on single crystals of
the iron pnictide superconductor LaFePO. We find clear evidence of electronic
correlations in metallic LaFePO with the kinetic energy of the electrons
reduced to half of that predicted by band theory of nearly free electrons.
Hallmarks of strong electronic many-body effects reported here are important
because the iron pnictides expose a new pathway towards a correlated electron
state that does not explicitly involve the Mott transition.Comment: 10 page
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG).open2
Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.
Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields