73 research outputs found
Improving the prediction of scour around submarine pipelines
YesLocal scour around submarine pipelines can affect the stability of the pipeline. The accurate estimation of the scour around submarine pipelines has been a hot topic of research among marine engineers. This paper presents results from a numerical study of clear-water scour depth below a submarine pipeline for a range of the steady flow conditions. The flow field around the pipeline under scour equilibrium condition is numerically simulated by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence closure. The flow discharge through the scour hole for various flow conditions is investigated. The results are used to establish the relationship between the flow discharge and the maximum scour depth. Incorporated with the Colebrook-White equation, the bed shear stress is obtained and an iterative method is proposed to predict the scour depth around the submarine pipeline. The calculated scour depths using the present method agree well with the laboratory measurements, with the average absolute relative error being smaller than that using previous methods, indicating that the proposed method can be used to predict the clear-water scour around the submarine pipeline with satisfactory accuracy.National Nature Science Fund of China (Grant No.50879084, 51279189), the Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1302),China Scholarship Council, Public Projects of Zhejiang Province (2016C33095) and the Natural Science Fund of Zhejiang Province (LQ16E090004)
Mutation analysis of "Endoglin" and "Activin receptor-like kinase" genes in German patients with hereditary hemorrhagic telangiectasia and the value of rapid genotyping using an allele-specific PCR-technique
<p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is an autosomal dominant disorder which is clinically characterised by recurrent epistaxis, mucocutaneous telangiectasia and visceral arteriovenous malformations. Genetic linkage studies identified two genes primarily related to HHT: endoglin (<it>ENG</it>) on chromosome 9q33-34 and activin receptor-like kinase1 (<it>ACVRL1</it>) on chromosome 12q13. We have screened a total of 41 unselected German patients with the suspected diagnosis of HHT. Mutation analysis for the <it>ENG </it>and <it>ACVRL1 </it>genes in all patients was performed by PCR amplification. Sequences were then compared to the HHT database <url>http://www.hhtmutation.org</url> sequences of the <it>ENG </it>mRNA (accession no. BC014271.2) and the <it>ACVRL1 </it>mRNA (accession no. NM000020.1).</p> <p>Results</p> <p>We identified 15 different mutations in 18 cases by direct sequencing. Among these mutations, one novel <it>ENG </it>mutation could be detected which has not yet been described in the literature before. The genotype-phenotype correlation was consistent with a higher frequency of pulmonary arteriovenous malformations in patients with <it>ENG </it>mutations than in patients with <it>ACVRL1 </it>mutations in our collective.</p> <p>Conclusion</p> <p>For rapid genotyping of mutations and SNPs (single nucleotide polymorphisms) in <it>ENG </it>and <it>ACVRL1</it>, allele-specific PCR methods with sequence-specific primers (PCR-SSP) were established and their value analysed.</p
Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia
Pancreatic cancer is a highly lethal malignancy with a dismal 5-year survival of less than 5%. The scarcity of early biomarkers has considerably hindered our ability to launch preventive measures for this malignancy in a timely manner. Neutrophil gelatinase-associated lipocalin (NGAL), a 24-kDa glycoprotein, was reported to be upregulated nearly 27-fold in pancreatic cancer cells compared to normal ductal cells in a microarray analysis. Given the need for biomarkers in the early diagnosis of pancreatic cancer, we investigated the expression of NGAL in tissues with the objective of examining if NGAL immunostaining could be used to identify foci of pancreatic intraepithelial neoplasia, premalignant lesions preceding invasive cancer. To examine a possible correlation between NGAL expression and the degree of differentiation, we also analysed NGAL levels in pancreatic cancer cell lines with varying grades of differentiation. Although NGAL expression was strongly upregulated in pancreatic cancer, and moderately in pancreatitis, only a weak expression could be detected in the healthy pancreas. The average composite score for adenocarcinoma (4.26±2.44) was significantly higher than that for the normal pancreas (1.0) or pancreatitis (1.0) (P<0.0001). Further, although both well- and moderately differentiated pancreatic cancer were positive for NGAL, poorly differentiated adenocarcinoma was uniformly negative. Importantly, NGAL expression was detected as early as the PanIN-1 stage, suggesting that it could be a marker of the earliest premalignant changes in the pancreas. Further, we examined NGAL levels in serum samples. Serum NGAL levels were above the cutoff for healthy individuals in 94% of pancreatic cancer and 62.5% each of acute and chronic pancreatitis samples. However, the difference between NGAL levels in pancreatitis and pancreatic cancer was not significant. A ROC curve analysis revealed that ELISA for NGAL is fairly accurate in distinguishing pancreatic cancer from non-cancer cases (area under curve=0.75). In conclusion, NGAL is highly expressed in early dysplastic lesions in the pancreas, suggesting a possible role as an early diagnostic marker for pancreatic cancer. Further, serum NGAL measurement could be investigated as a possible biomarker in pancreatitis and pancreatic adenocarcinoma
Clinical significance of Neutrophil gelatinase-associated lipocalin(NGAL) expression in primary rectal cancer
<p>Abstract</p> <p>Background</p> <p>Emerging evidence has demonstrated that Neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated in multiple malignancies, including oesophagus cancer, and plays a critical role in tumorigenesis and progression. However, till now, little is known about the role of NGAL in human rectal cancer. Its association with clinicopathologic characteristics and expression of MMP-9, one of its target genes, has not been reported systematically in rectal cancer. Therefore, to further determine the potential involvement of NGAL in rectal cancer, we have evaluated the expression level of NGAL mRNA by real time RT-PCR, and further elucidated the correlation of NGAL mRNA expression with clinicopathologic features and MMP-9 in rectal cancer.</p> <p>Methods</p> <p>100 paired samples of rectal cancer and adjacent normal tissues obtained from inpatients undergoing surgical operation were allocated into two groups (cancer group and control group). The mRNA expression of NGAL and MMP-9 was determined by real-time RT-PCR. The association between their expression and clinicopathological characteristics of rectal cancer were analysised.</p> <p>Results</p> <p>Among the 100 rectal cancers, 69 cases of NGAL mRNA up-regulation were observed. NGAL mRNA up-regulation was positively correlated with MMP-9 (<it>r</it><sub>s </sub>= 0.393, <it>p </it>< 0.001). In rectal cancer, NGAL mRNA overexpression was significantly associated with depth of invasion (<it>p </it>= 0.028), lymph node metastasis (<it>p </it>= 0.009), venous involvement (<it>p </it>= 0.023) and advanced pTNM stage (<it>p </it>= 0.011).</p> <p>Conclusion</p> <p>In human rectal cancer, NGAL mRNA expression was elevated. NGAL mRNA up-regulation was correlated significantly with tumor progression and MMP-9 mRNA overexpression in rectal cancer, suggesting a more aggressive phenotype. NGAL could be used for rectal cancer characterization.</p
Minimal Holocene retreat of large tidewater glaciers in Køge Bugt, southeast Greenland
Abstract Køge Bugt, in southeast Greenland, hosts three of the largest glaciers of the Greenland Ice Sheet; these have been major contributors to ice loss in the last two decades. Despite its importance, the Holocene history of this area has not been investigated. We present a 9100 year sediment core record of glaciological and oceanographic changes from analysis of foraminiferal assemblages, the abundance of ice-rafted debris, and sortable silt grain size data. Results show that ice-rafted debris accumulated constantly throughout the core; this demonstrates that glaciers in Køge Bugt remained in tidewater settings throughout the last 9100 years. This observation constrains maximum Holocene glacier retreat here to less than 6 km from present-day positions. Retreat was minimal despite oceanic and climatic conditions during the early-Holocene that were at least as warm as the present-day. The limited Holocene retreat of glaciers in Køge Bugt was controlled by the subglacial topography of the area; the steeply sloping bed allowed glaciers here to stabilise during retreat. These findings underscore the need to account for individual glacier geometry when predicting future behaviour. We anticipate that glaciers in Køge Bugt will remain in stable configurations in the near-future, despite the predicted continuation of atmospheric and oceanic warming
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
How sulphate-reducing microorganisms cope with stress: lessons from systems biology
Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery
- …