7 research outputs found

    Structures of apo and GTP-bound molybdenum cofactor biosynthesis protein MoaC from Thermus thermophilus HB8

    No full text
    The first step in the molybdenum cofactor (Moco) biosynthesis pathway involves the conversion of guanosine triphosphate (GTP) to precursor Z by two proteins (MoaA and MoaC). MoaA belongs to the S-adenosylmethioninedependent radical enzyme superfamily and is believed to generate protein and/or substrate radicals by reductive cleavage of S-adenosylmethionine using an Fe-S cluster. MoaC has been suggested to catalyze the release of pyrophosphate and the formation of the cyclic phosphate of precursor Z. However, structural evidence showing the binding of a substrate-like molecule to MoaC is not available. Here, apo and GTP-bound crystal structures of MoaC from Thermus thermophilus HB8 are reported. Furthermore, isothermal titration calorimetry experiments have been carried out in order to obtain thermodynamic parameters for the protein-ligand interactions. In addition, molecular-dynamics (MD) simulations have been carried out on the protein-ligand complex of known structure and on models of relevant complexes for which X-ray structures are not available. The biophysical, structural and MD results reveal the residues that are involved in substrate binding and help in speculating upon a possible mechanism

    Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials

    No full text

    The Need for Restructuring the Disordered Science of Amorphous Drug Formulations

    No full text
    corecore