6 research outputs found

    Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Get PDF
    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of Ξ±9Ξ±10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key Ξ±9Ξ±10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABA(B) receptors has caused confusion over whether blockade of Ξ±9Ξ±10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent Ξ±9Ξ±10 nAChRs, and was at least 1,000-fold more selective for Ξ±9Ξ±10 nAChRs vs. all other molecular targets tested, including opioid and GABA(B) receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in Ξ±9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of Ξ±9-containing nAChRs as the basis for the efficacy of RgIA4, and that Ξ±9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain

    IL28B SNP rs12979860 Is a Critical Predictor for On-Treatment and Sustained Virologic Response in Patients with Hepatitis C Virus Genotype-1 Infection

    Get PDF
    Single nucleotide polymorphisms (SNPs) of interleukin-28B (IL28B) have received considerable interest for their association with sustained virological response (SVR) when treating patients of genotype-1 hepatitis C virus (GT1-HCV) chronic infection with pegylated interferon and ribavirin (PegIFN/RBV). This study was to investigate the predictive power of IL28B SNPs for on-treatment responses and SVR in treatment-naΓ―ve patients with GT1-HCV chronic infection.We analyzed ten SNPs of IL28B in 191 treatment-naΓ―ve patients with GT1-HCV chronic infection who received PegIFN/RBV. In these patients, rapid virological response (RVR), early virological response (EVR) and SVR were achieved in 69.6%, 95.8% and 68.6% of the patients, respectively. Multivariate analysis (odds ratio; 95% confidence interval; P value) indicated age (0.96; 0.93-0.99; 0.012), low baseline viral load (4.65; 2.23-9.66; <0.001) and CC genotype of rs12979860 (7.74; 2.55-23.53; <0.001) but no other SNPs were independent predictors for SVR. In addition, none of the ten SNPs examined were associated with baseline viral load and stages of liver fibrosis. Regarding RVR, low baseline viral load (2.83; 1.40-5.73; 0.004) and CC genotype of rs12979860 (10.52; 3.45-32.04; <0.001) were two critical predictors. As for EVR, only CC genotype of rs12979860 (36.21; 6.68-196.38; <0.001) was the predictor. Similarly, for end of treatment response (ETR), CC genotype of rs12979860 (15.42; 4.62-51.18; <0.001) was the only predictor. For patients with RVR, only low baseline viral load (3.90; 1.57-9.68; 0.003) could predict the SVR. For patients without RVR, only rs12979860 (4.60; 1.13-18.65; 0.033) was the predictor for SVR.rs12979860 is the critical predictor for RVR, EVR, ETR and SVR in treatment-naΓ―ve patients of GT1-HCV chronic infection. Furthermore, this SNP is the only predictor for SVR in patients without RVR. These results have provided evidence that rs12979860 is the ideal IL28B SNP for genetic testing in treating patients of GT1-HCV chronic infection

    Msh2 Blocks an Alternative Mechanism for Non-Homologous Tail Removal during Single-Strand Annealing in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer
    corecore