47 research outputs found

    A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment.</p> <p>Methods</p> <p>A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of <it>arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil</it>.</p> <p>Conclusion</p> <p>Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases.</p

    Characterization of n-Hexane sub-fraction of Bridelia micrantha (Berth) and its antimycobacterium activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis, caused by <it>Mycobacterium tuberculosis </it>(MTB), is the most notified disease in the world. Development of resistance to first line drugs by MTB is a public health concern. As a result, there is the search for new and novel sources of antimycobacterial drugs for example from medicinal plants. In this study we determined the <it>in vitro </it>antimycobacterial activity of <it>n</it>-Hexane sub-fraction from <it>Bridelia micrantha </it>(Berth) against MTB H<sub>37</sub>Ra and a clinical isolate resistant to all five first-line antituberculosis drugs.</p> <p>Methods</p> <p>The antimycobacterial activity of the <it>n</it>-Hexane sub-fraction of ethyl acetate fractions from acetone extracts of <it>B. micrantha </it>barks was evaluated using the resazurin microplate assay against two MTB isolates. Bioassay-guided fractionation of the ethyl acetate fraction was performed using 100% <it>n</it>-Hexane and Chloroform/Methanol (99:1) as solvents in order of increasing polarity by column chromatography and Resazurin microtiter plate assay for susceptibility tests.</p> <p>Results</p> <p>The <it>n</it>-Hexane fraction showed 20% inhibition of MTB H<sub>37</sub>Ra and almost 35% inhibition of an MTB isolate resistant to all first-line drugs at 10 μg/mL. GC/MS analysis of the fraction resulted in the identification of twenty-four constituents representing 60.5% of the fraction. Some of the 24 compounds detected included Benzene, 1.3-bis (3-phenoxyphenoxy (13.51%), 2-pinen-4-one (10.03%), N(b)-benzyl-14-(carboxymethyl) (6.35%) and the least detected compound was linalool (0.2%).</p> <p>Conclusions</p> <p>The results show that the <it>n-</it>Hexane fraction of <it>B. micrantha </it>has antimycobacterial activity.</p

    Accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface

    No full text
    Numerous fungal and oomycete pathogens penetrate the plant cell wall and extract nutrition from the host cells by a feeding structure called the haustorium. We recently revealed that the Arabidopsis resistance protein RPW8.2 is specifically targeted to the extrahaustorial membrane (EHM) for activation of haustorium-targeted resistance to powdery mildew pathogens. Consistent with its EHM-localization, RPW8.2 contains a putative transmembrane (TM) domain at its N-terminus. Here, we show that translational fusion of YFP to the N-terminus of RPW8.2 results in localization of YFP-RPW8.2 to both the plasma membrane and the EHM, and loss of RPW8.2's defense function. We also show that deletion of the TM domain results in mis-localization of the RPW8.2-YFP fusion protein and extremely low levels of accumulation. These results indicate that an intact N-terminal TM domain is necessary for EHM-specific localization and defense function of RPW8.2. In addition, we show that when expressed from the strong constitutive 35S viral promoter, RPW8.2 accumulates at low levels in the EHM insufficient to activate resistance, highlighting the importance of strong spatiotemporal expression of RPW8.2 from its native promoter. Taken together, our results indicate that accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface
    corecore