46,924 research outputs found
Parametric Competition in non-autonomous Hamiltonian Systems
In this work we use the formalism of chord functions (\emph{i.e.}
characteristic functions) to analytically solve quadratic non-autonomous
Hamiltonians coupled to a reservoir composed by an infinity set of oscillators,
with Gaussian initial state. We analytically obtain a solution for the
characteristic function under dissipation, and therefore for the determinant of
the covariance matrix and the von Neumann entropy, where the latter is the
physical quantity of interest. We study in details two examples that are known
to show dynamical squeezing and instability effects: the inverted harmonic
oscillator and an oscillator with time dependent frequency. We show that it
will appear in both cases a clear competition between instability and
dissipation. If the dissipation is small when compared to the instability, the
squeezing generation is dominant and one can see an increasing in the von
Neumann entropy. When the dissipation is large enough, the dynamical squeezing
generation in one of the quadratures is retained, thence the growth in the von
Neumann entropy is contained
Characterization in bi-parameter space of a non-ideal oscillator
The authors thank scientific agencies CAPES, CNPq (112952/2015-1), and FAPESP (2011/ 19269-11). M. S. Baptista also thanks EPSRC (EP/I03 2606/1).Peer reviewedPostprin
- …