33,980 research outputs found

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology

    Full text link
    We investigate the influence of massive photons on the evolution of the expanding universe. Two particular models for generalized electrodynamics are considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P=P(ε)P=P(\varepsilon) for each case using dispersion relations derived from both theories. The EOS are inputted into the Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale factor a(t)a(t). It is shown that the photon non-null mass does not significantly alter the result at1/2a\propto t^{1/2} valid for a massless photon gas; this is true either in de Broglie-Proca's case (where the photon mass mm is extremely small) or in Bopp-Podolsky theory (for which mm is extremely large).Comment: 8 pages, 2 figures; v2 matches the published versio

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Thermal Effects on Photon-Induced Quantum Transport

    Full text link
    We theoretically investigate laser induced quantum transport in a two-level quantum dot attached to electric contacts. Our approach, based on nonequilibrium Green function technique, allows to include thermal effects on the photon-induced quantum transport and excitonic coherent dynamics. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupations as a function of time. The characteristic coherent Rabi oscillations are found in both occupations and photocurrent, with two distinct sources of decoherence: incoherent tunneling and thermal fluctuations. In particular, for increasing temperature the dot becomes more thermally occupied which shrinks the amplitude of the Rabi oscillations, due to Pauli blockade. Finally, due to the interplay between photon and thermal induced electron populations, the photocurrent can switch sign as time evolves and its stationary value can be maximized by tunning the laser intensity.Comment: 5 pages, 4 figure

    Irreversibility and the arrow of time in a quenched quantum system

    Get PDF
    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.Comment: 8 pages, 7 figures, RevTeX4-1; Accepted for publication Phys. Rev. Let

    Experimental analysis of lateral impact on planar brittle material: spatial properties of the cracks

    Get PDF
    The breakup of glass and alumina plates due to planar impacts on one of their lateral sides is studied. Particular attention is given to investigating the spatial location of the cracks within the plates. Analysis based on a phenomenological model suggests that bifurcations along the cracks' paths are more likely to take place closer to the impact region than far away from it, i. e., the bifurcation probability seems to lower as the perpendicular distance from the impacted lateral in- creases. It is also found that many observables are not sensitive to the plate material used in this work, as long as the fragment multiplicities corresponding to the fragmentation of the plates are similar. This gives support to the universal properties of the fragmentation process reported in for- mer experiments. However, even under the just mentioned circumstances, some spatial observables are capable of distinguishing the material of which the plates are made and, therefore, it suggests that this universality should be carefully investigated

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000
    corecore