26,592 research outputs found

    Anderson localization on the Falicov-Kimball model with Coulomb disorder

    Full text link
    The role of Coulomb disorder is analysed in the Anderson-Falicov-Kimball model. Phase diagrams of correlated and disordered electron systems are calculated within dynamical mean-field theory applied to the Bethe lattice, in which metal-insulator transitions led by structural and Coulomb disorders and correlation can be identified. Metallic, Mott insulator, and Anderson insulator phases, as well as the crossover between them are studied in this perspective. We show that Coulomb disorder has a relevant role in the phase-transition behavior as the system is led towards the insulator regime

    Inclusive Breakup Theory of Three-Body Halos

    Full text link
    We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model \cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound three-cluster nuclei in A (a,b) XA\,(a,b)\,X / a=x1+x2+ba = x_1 + x_2 + b collisions. The four-body theory is an extension of the three-body approaches developed in the 80's by Ichimura, Autern and Vincent (IAV) \cite{IAV1985}, Udagawa and Tamura (UT) \cite{UT1981} and Hussein and McVoy (HM) \cite{HM1985}. We expect that experimentalists shall be encouraged to search for more information about the x1+x2x_{1} + x_{2} system in the elastic breakup cross section and that also further developments and extensions of the surrogate method will be pursued, based on the inclusive non-elastic breakup part of the bb spectrum.Comment: 8 pages, 3 figures, Contribution to the Proceedings of Fusion17: "International Conference on Heavy-Ion Collisions at Near-Barrier Energies", 20-24 February 2017 Hobart, Tasmania, Australi

    Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    Get PDF
    Using non-equilibrium Green functions we calculate the spin-polarized current and shot noise in a ferromagnet--quantum-dot--ferromagnet (FM-QD-FM) system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin-flip (similar to a transverse magnetic field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization ℘\wp. In particular, ℘\wp can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage. The coherent spin-flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression of the Fano factor to values well below 0.5.Comment: Published version. 13 pages, 7 figure

    Anomalous Lattice Response at the Mott Transition in a Quasi-2D Organic Conductor

    Full text link
    Discontinuous changes of the lattice parameters at the Mott metal-insulator transition are detected by high-resolution dilatometry on deuterated crystals of the layered organic conductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br. The uniaxial expansivities uncover a striking and unexpected anisotropy, notably a zero-effect along the in-plane c-axis along which the electronic interactions are relatively strong. A huge thermal expansion anomaly is observed near the end-point of the first-order transition line enabling to explore the critical behavior with very high sensitivity. The analysis yields critical fluctuations with an exponent α~≃\tilde{\alpha} \simeq 0.8 ±\pm 0.15 at odds with the novel criticality recently proposed for these materials [Kagawa \textit{et al.}, Nature \textbf{436}, 534 (2005)]. Our data suggest an intricate role of the lattice degrees of freedom in the Mott transition for the present materials.Comment: 4 pages, 4 figure

    Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice

    Get PDF
    OBJECTIVE: Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. METHODS: Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. RESULTS: The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds(−1). Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. CONCLUSION: The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA
    • …
    corecore