14,536 research outputs found

    Towards the undestanding of radial velocity pulsation in roAp stars

    Full text link
    High-resolution spectroscopic time series of rapidly oscillating Ap stars show evidence for a co-existence of standing and running waves in their atmospheric layers. With the purpose of understanding these observations we have carried out a theoretical analysis of the pulsations in the outermost layers of these stars, starting from the simplest possible model that still retains all important physical ingredients. In our analysis we considered an isothermal atmosphere in a plane-parallel approximation. Moreover we assumed that in the region considered the magnetic pressure is much larger than the gas pressure and, consequently, that the magnetoacoustic wave has decoupled into its acoustic and magnetic components. Using the analytical solutions for the velocity components appropriate to this model we estimate the velocity component parallel to the line of sight averaged over the visible stellar disk. Fitting the latter to a function of the form Acos(σ\sigmat+phase), with σ\sigma the dimensionless oscillation frequency and t the dimensionless time, we derive the amplitude A and the phase for our model as function of height in the atmosphere.Comment: 5 pages and 5 figure

    Chaos and Synchronized Chaos in an Earthquake Model

    Full text link
    We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquakes. This is in contrast with previous numerical studies, but in agreement with experimental results. In this system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-block system, we see the appearance of synchronized chaos, showing that this concept can have potential applications in the field of seismology.Comment: To appear in Physical Review Letters (13 pages, 6 figures

    Exponential Distributions in a Mechanical Model for Earthquakes

    Full text link
    We study statistical distributions in a mechanical model for an earthquake fault introduced by Burridge and Knopoff [R. Burridge and L. Knopoff, {\sl Bull. Seismol. Soc. Am.} {\bf 57}, 341 (1967)]. Our investigations on the size (moment), time duration and number of blocks involved in an event show that exponential distributions are found in a given range of the paramenter space. This occurs when the two kinds of springs present in the model have the same, or approximately the same, value for the elastic constants. Exponential distributions have also been seen recently in an experimental system to model earthquake-like dynamics [M. A. Rubio and J. Galeano, {\sl Phys. Rev. E} {\bf 50}, 1000 (1994)].Comment: 11 pages, uuencoded (submitted to Phys. Rev. E

    NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR

    Full text link
    Context: Effective temperature, surface gravity, and metallicity are basic spectroscopic stellar parameters necessary to characterize a star or a planetary system. Reliable atmospheric parameters for FGK stars have been obtained mostly from methods that relay on high resolution and high signal-to-noise optical spectroscopy. The advent of a new generation of high resolution near-IR spectrographs opens the possibility of using classic spectroscopic methods with high resolution and high signal-to-noise in the NIR spectral window. Aims: We aim to compile a new iron line list in the NIR from a solar spectrum to derive precise stellar atmospheric parameters, comparable to the ones already obtained from high resolution optical spectra. The spectral range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H, and K bands. Methods: Our spectroscopic analysis is based on the iron excitation and ionization balance done in LTE. We use a high resolution and high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as a starting point to compile the iron line list. The oscillator strengths (log gf) of the iron lines were calibrated for the Sun. The abundance analysis was done using the MOOG code after measuring equivalent widths of 357 solar iron lines. Results: We successfully derived stellar atmospheric parameters for the Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived stellar atmospheric parameters using the same line list as for the Sun. The spectrum was obtained from the CRIRES- POP database. The results are compatible with the ones found in the literature, confirming the reliability of our line list. However, due to the quality of the data we obtain large errors.Comment: 9 pages and 9 figure
    corecore