13,444 research outputs found
Heuristic Backtracking Algorithms for SAT
In recent years backtrack search SAT solvers have been the subject of dramatic improvements. These improvements allowed SAT solvers to successfully replace BDDs in many areas of formal verification, and also motivated the development of many new challenging problem instances, many of which too hard for the current generation of SAT solvers. As a result, further improvements to SAT technology are expected to have key consequences in formal verification. The objective of this paper is to propose heuristic approaches to the backtrack step of backtrack search SAT solvers, with the goal of increasing the ability of the SAT solver to search different parts of the search space. The proposed heuristics to the backtrack step are inspired by the heuristics proposed in recent years for the branching step of SAT solvers, namely VSIDS and some of its improvements. The preliminary experimental results are promising, and motivate the integration of heuristic backtracking in state-of-the-art SAT solvers. 1
Recommended from our members
Enhancing Fault / Intrusion Tolerance through Design and Configuration Diversity
Fault/intrusion tolerance is usually the only viable way of improving the system dependability and security in the presence of continuously evolving threats. Many of the solutions in the literature concern a specific snapshot in the production or deployment of a fault-tolerant system and no immediate considerations are made about how the system should evolve to deal with novel threats. In this paper we outline and evaluate a set of operating systems’ and applications’ reconfiguration rules which can be used to modify the state of a system replica prior to deployment or in between recoveries, and hence increase the replicas chance of a longer intrusion-free operation
Effect of long range spatial correlations on the lifetime statistics of an emitter in a two-dimensional disordered lattice
The effect of spatial correlations on the Purcell effect in a bidimensional
dispersion of resonant nanoparticles is analyzed. We perform extensive
calculations on the fluorescence decay rate of a point emitter embedded in a
system of nanoparticles statistically distributed according to a simple 2D
lattice-gas model near the critical point. For short-range correlations (high
temperature thermalization) the Purcell factors present a long-tailed statistic
which evolves towards a bimodal distribution when approaching the critical
point where the spatial correlation length diverges. Our results suggest
long-range correlations as a possible origin of the large fluctuations of
experimental decay rates in disordered metal films.Comment: 6 pages, 5 figure
Alternate islands of multiple isochronous chains in wave-particle interactions
We analyze the dynamics of a relativistic particle moving in a uniform
magnetic field and perturbed by a standing electrostatic wave. We show that a
pulsed wave produces an infinite number of perturbative terms with the same
winding number, which may generate islands in the same region of phase space.
As a consequence, the number of isochronous island chains varies as a function
of the wave parameters. We observe that in all the resonances, the number of
chains is related to the amplitude of the various resonant terms. We determine
analytically the position of the periodic points and the number of island
chains as a function of the wave number and wave period. Such information is
very important when one is concerned with regular particle acceleration, since
it is necessary to adjust the initial conditions of the particle to obtain the
maximum acceleration.Comment: Submitte
Recommended from our members
FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery
The goal of the FOREVER project is to develop a service for Fault/intrusiOn REmoVal through Evolution & Recovery. In order to achieve this goal, our work addresses three main tasks: the definition of the FOREVER service architecture; the analysis of how diversity techniques can improve resilience; and the evaluation of the FOREVER service. The FOREVER service is an important contribution to intrustion-tolerant replication middleware and significantly enhances the resilience
Electrical activation and electron spin coherence of ultra low dose antimony implants in silicon
We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically
enriched 28Si and find high degrees of electrical activation and low levels of
dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance
shows that spin echo decay is sensitive to the dopant depths, and the interface
quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles
peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface
is passivated with hydrogen. These measurements provide benchmark data for the
development of devices in which quantum information is encoded in donor
electron spins
RATES OF FITNESS DECLINE AND REBOUND SUGGEST PERVASIVE EPISTASIS
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear--a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of -0.01, and an effective number of traits nine in mutS(-) E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.LAO/ITQB, FCT, Danish Council for Independent Research
- …