13,444 research outputs found

    Heuristic Backtracking Algorithms for SAT

    Full text link
    In recent years backtrack search SAT solvers have been the subject of dramatic improvements. These improvements allowed SAT solvers to successfully replace BDDs in many areas of formal verification, and also motivated the development of many new challenging problem instances, many of which too hard for the current generation of SAT solvers. As a result, further improvements to SAT technology are expected to have key consequences in formal verification. The objective of this paper is to propose heuristic approaches to the backtrack step of backtrack search SAT solvers, with the goal of increasing the ability of the SAT solver to search different parts of the search space. The proposed heuristics to the backtrack step are inspired by the heuristics proposed in recent years for the branching step of SAT solvers, namely VSIDS and some of its improvements. The preliminary experimental results are promising, and motivate the integration of heuristic backtracking in state-of-the-art SAT solvers. 1

    Effect of long range spatial correlations on the lifetime statistics of an emitter in a two-dimensional disordered lattice

    Get PDF
    The effect of spatial correlations on the Purcell effect in a bidimensional dispersion of resonant nanoparticles is analyzed. We perform extensive calculations on the fluorescence decay rate of a point emitter embedded in a system of nanoparticles statistically distributed according to a simple 2D lattice-gas model near the critical point. For short-range correlations (high temperature thermalization) the Purcell factors present a long-tailed statistic which evolves towards a bimodal distribution when approaching the critical point where the spatial correlation length diverges. Our results suggest long-range correlations as a possible origin of the large fluctuations of experimental decay rates in disordered metal films.Comment: 6 pages, 5 figure

    Alternate islands of multiple isochronous chains in wave-particle interactions

    Full text link
    We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with the same winding number, which may generate islands in the same region of phase space. As a consequence, the number of isochronous island chains varies as a function of the wave parameters. We observe that in all the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine analytically the position of the periodic points and the number of island chains as a function of the wave number and wave period. Such information is very important when one is concerned with regular particle acceleration, since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.Comment: Submitte

    Electrical activation and electron spin coherence of ultra low dose antimony implants in silicon

    Full text link
    We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically enriched 28Si and find high degrees of electrical activation and low levels of dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant depths, and the interface quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins

    RATES OF FITNESS DECLINE AND REBOUND SUGGEST PERVASIVE EPISTASIS

    Get PDF
    Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear--a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of -0.01, and an effective number of traits nine in mutS(-) E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.LAO/ITQB, FCT, Danish Council for Independent Research
    corecore